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inaccurate gradient
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CREST, ENSAE, Université Paris-Saclay

Abstract. In this paper, we revisit the recently established theoretical
guarantees for the convergence of the Langevin Monte Carlo algorithm
of sampling from a smooth and (strongly) log-concave density. We im-
prove, in terms of constants, the existing results when the accuracy of
sampling is measured in the Wasserstein distance and provide further
insights on relations between, on the one hand, the Langevin Monte
Carlo for sampling and, on the other hand, the gradient descent for op-
timization. More importantly, we establish non-asymptotic guarantees
for the accuracy of a version of the Langevin Monte Carlo algorithm
that is based on inaccurate evaluations of the gradient. Finally, we
propose a variable-step version of the Langevin Monte Carlo algorithm
that has two advantages. First, its step-sizes are independent of the tar-
get accuracy and, second, its rate provides a logarithmic improvement
over the constant-step Langevin Monte Carlo algorithm.
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1. INTRODUCTION

The problem of sampling a random vector distributed according to a given target distri-
bution is central in many applications. In the present paper, we consider this problem in the
case of a target distribution has a smooth and log-concave density and the sampling is per-
formed by the Langevin Monte Carlo algorithm. More precisely, let p be a positive integer and
f : Rp → R be a continuously differentiable function satisfying, for some positive constants
m and M , the conditions




f(θ)− f(θ′)−∇f(θ′)⊤(θ − θ′) ≥ (m/2)‖θ − θ′‖22,

‖∇f(θ)−∇f(θ′)‖2 ≤ M‖θ − θ′‖2,
∀θ,θ′ ∈ R

p, (1)

where∇f stands for the gradient of f and ‖·‖2 is the Euclidean norm. The target distributions
considered in this paper are those having a density with respect to the Lebesgue measure on
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R
p given by

π(θ) =
e−f(θ)

∫
Rp e−f(u) du

.

We say that the density π(θ) ∝ e−f(θ) is log-concave (resp. strongly log-concave) if the
function f satisfies the first inequality of (1) with m = 0 (resp. m > 0).

The Langevin Monte Carlo (LMC) algorithm studied throughout this work is the analogue
of the gradient descent algorithm for optimization. Starting from an initial point ϑ0 ∈ R

p that
may be deterministic or random, the iterations of the algorithm are defined by the update
rule

ϑk+1,h = ϑk,h − hk+1∇f(ϑk,h) +
√

2hk+1 ξk+1; k = 0, 1, 2, . . . (2)

where h = {hk}k∈N is a sequence of positive parameters, referred to as the step-sizes, and
ξ1, . . . , ξk, . . . is a sequence of mutually independent, and independent of ϑ0, centered Gaus-
sian vectors with covariance matrices equal to identity.

When all the hk’s are equal to some value h > 0, we will call the sequence in (2) the
constant step-size LMC and will denote it by ϑk+1,h. Under the assumptions imposed on f ,
when h is small and k is large (so that the product kh is large), the distribution of ϑk,h is close
in various metrics to the distribution with density π(θ), hereafter referred to as the target
distribution. An important question is to quantify this closeness. We address this question by
establishing user friendly non asymptotic upper bounds on the error of sampling; these kind
of bounds are particularly useful for deriving a stopping rule for the LMC algorithm.

In this paper, we measure the error of sampling in the Wasserstein-Monge-Kantorovich
distance W2. For two measures µ and ν defined on (Rp,B(Rp)), and for a real number q ≥ 1,
Wq is defined by

Wq(µ, ν) =
(

inf
̺∈̺(µ,ν)

∫

Rp×Rp

‖θ − θ′‖q2 d̺(θ,θ′)
)1/q

,

where the inf is with respect to all joint distributions ̺ having µ and ν as marginal distri-
butions. This distance is perhaps more suitable for quantifying the quality of approximate
sampling schemes than other metrics such as the total variation or the Kullback-Leibler di-
vergence. Indeed, on the one hand, bounds on the Wasserstein distance—unlike the bounds
on the total-variation distance—directly provide the level of approximating the first and the
second order moments. For instance, if µ and ν are two Dirac measures at the points θ and
θ′, respectively, then the total-variation distance DTV(δθ , δθ′) equals one whenever θ 6= θ′,
whereas W2(δθ , δθ′) = ‖θ − θ′‖2 is a smoothly increasing function of the Euclidean distance
between θ and θ′. This seems to better correspond to the intuition on the closeness of two
distributions.

Throughout this work, for any matrix M, we denote by ‖M‖ and ‖M‖F , respectively, the
spectral norm and the Frobenius norm of M.

Asymptotic properties of the LMC algorithm, also known as Unadjusted Langevin Algo-
rithm (ULA), and its Metropolis adjusted version, MALA, have been studied in a number of
papers (Jarner and Hansen, 2000; Roberts and Rosenthal, 1998; Roberts and Stramer, 2002;
Roberts and Tweedie, 1996; Stramer and Tweedie, 1999a,b). These results do not emphasize



USER-FRIENDLY GUARANTEES FOR THE LMC 3

the effect of the dimension on the computational complexity of the algorithm, which is roughly
proportional to the number of iterations. Non asymptotic bounds on the total variation error
of the LMC for log-concave and strongly log-concave distributions have been established by
Dalalyan (2014). If a warm start is available, the results in Dalalyan (2014) imply that after
O(p/ǫ2) iterations the LMC algorithm has an error bounded from above by ǫ. Furthermore,
if we assume that in addition to (1) the function f has a Lipschitz continuous Hessian, then
a modified version of the LMC, the LMC with Ozaki discretization (LMCO), needs O(p/ǫ)
iterations to achieve a precision level ǫ. These results were improved and extended to the
Wasserstein distance by (Durmus and Moulines, 2016; Durmus and Moulines, 2017). More
precisely, they removed the condition of the warm start and proved that under the Lipschitz
continuity assumption on the Hessian of f , it is not necessary to modify the LMC for getting
the rate O(p/ǫ). The last result is closely related to an error bound between a diffusion process
and its Euler discretization established by Alfonsi et al. (2014).

On a related note, (Bubeck et al., 2015) studied the convergence of the LMC algorithm
with reflection at the boundary of a compact set, which makes it possible to sample from
a compactly supported density (see also (Brosse et al., 2017)). Extensions to non-smooth
densities were presented in (Durmus et al., 2016; Luu et al., 2017). (Cheng and Bartlett,
2017) obtained guarantees similar to those in (Dalalyan, 2014) when the error is measured
by the Kullback-Leibler divergence. Very recently, (Cheng et al., 2017) derived non asymp-
totic guarantees for the underdamped LMC which turned out to improve on the previously
known results. Langevin dynamics was used in (Andrieu et al., 2016; Brosse et al., 2017) in
order to approximate normalizing constants of target distributions. Huggins and Zou (2017)
established tight bounds in Wasserstein distance between the invariant distributions of two
(Langevin) diffusions; the bounds involve mixing rates of the diffusions and the deviation in
their drifts.

The goal of the present work is to push further the study of the LMC and its variants both
by improving the existing guarantees and by extending them in some directions. Our main
contributions can be summarized as follows:

• We get improved and simplified guarantees in Wasserstein distance both for the LMC
and the LMCO when the step-size is constant, see Theorem 1 and Theorem 5.

• We propose varying-step LMC which avoids a logarithmic factor in the number of iter-
ations required to achieve a precision level ǫ, see Theorem 2.

• We extend the previous guarantees to the case where accurate evaluations of the gradient
are unavailable. Thus, at each iteration of the algorithm, the gradient is computed within
an error that has a deterministic and a stochastic component. Theorem 3 deals with
functions f satisfying (1), whereas Theorem 4 requires the additional assumption of the
smoothness of the Hessian of f .

• We propose a new second-order sampling algorithm termed LMCO’. It has a per-
iteration computational cost comparable to that of the LMC and enjoys nearly the
same guarantees as the LMCO, when the Hessian of f is Lipschitz continuous, see
Theorem 5.

• We provide a detailed discussion of the relations between, on the one hand, the sampling
methods and guarantees of their convergence and, on the other hand, optimization
methods and guarantees of their convergence (see Section 5).
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We have to emphasize right away that theorem 1 is a corrected version of (Dalalyan, 2017,
Theorem 1), whereas Theorem 3 extends (Dalalyan, 2017, Theorem 3) to more general noise.
In particular, Theorem 3 removes the unbiasedness and independence conditions. Furthermore,
thanks to a shrewd use of a recursive inequality, the upper bound in Theorem 3 is tighter
than the one in (Dalalyan, 2017, Theorem 3).

As an illustration of the first two bullets mentioned in the above summary of our contri-
butions, let us consider the following example. Assume that m = 10, M = 20 and we have at
our disposal an initial sampling distribution ν0 satisfying W2(ν0, π) = p + (p/m). The main
inequalities in Theorem 1 and Theorem 2 imply that after K iterations, we have

W2(νK , π) ≤ (1−mh)KW2(ν0, π) + 1.65(M/m)(hp)1/2 (3)

for the constant step LMC and

W2(νK , π) ≤ 3.5M
√
p

m
√

M +m+ (2/3)m(K −K1)
(4)

for the varying step LMC, where K1 is an integer the precise value of which is provided in
Theorem 2. One can compare these inequalities with the corresponding bound in (Durmus
and Moulines, 2016): adapted to the constant-step, it takes the form

W 2
2 (νK , π) ≤ 2

(
1− mMh

m+M

)K
W 2

2 (ν, π)+
Mhp

m
(m+M)

(
h+

m+M

2mM

)(
2+

M2h

m
+
M2h2

6

)
. (5)

For any ǫ > 0, we can derive from these guarantees the smallest number of iterations, Kǫ,
for which there is a h > 0 such that the corresponding upper bound is smaller than ǫ. The
logarithms of these values Kǫ for varying ǫ ∈ {0.001, 0.005, 0.01} and p ∈ {25, 1000} are
plotted in Figure 1. We observe that for all the considered values of ǫ and p, the number of
iterations derived from (4) (referred to as Theorem 2) is smaller than those derived from (3)
(referred to as Theorem 1) and from (5) (referred to as DM bound). The difference between
the varying step LMC and the constant step LMC becomes more important when the target
precision level ǫ gets smaller. In average over all values of p, when ǫ = 0.001, the number of
iterations derived from (5) is 4.6 times larger than that derived from (4), and almost 3 times
larger than the number of iterations derived from (3).

2. IMPROVED GUARANTEES IN THE WASSERSTEIN DISTANCE

The rationale behind the LMC algorithm (2) is simple: the Markov chain {ϑk,h}k∈N is the
Euler discretization of a continuous-time diffusion process {Lt : t ∈ R+}, known as Langevin
diffusion, that has π as invariant density (Bhattacharya, 1978, Thm. 3.5). The Langevin
diffusion is defined by the stochastic differential equation

dLt = −∇f(Lt) dt+
√
2 dWt, t ≥ 0, (6)

where {Wt : t ≥ 0} is a p-dimensional Brownian motion. When f satisfies condition (1),
equation (6) has a unique strong solution which is a Markov process. Let νk be the distribution
of the k-th iterate of the LMC algorithm, that is ϑk,h ∼ νk. In what follows, we present user-
friendly guarantees on the closeness of νk and π in the strongly convex and non-strongly
convex situations.
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Fig 1. Plots showing the logarithm of the number of iterations as function of dimension p for several values of

ǫ. The plotted values are derived from (3)-(5) using the data m = 10, M = 20, W2(ν0, π) = p+ (p/m).

2.1 Guarantees under strong convexity for the constant step LMC

We start by considering the simpler case where the function f is m-strongly convex, that
is it satisfies (1).

Theorem 1. Assume that h ∈ (0, 2/M). The following claims hold:

(a) If h ≤ 2/(m+M) then W2(νK , π) ≤ (1−mh)KW2(ν0, π) + 1.65(M/m)(hp)1/2 .

(b) If h ≥ 2/(m+M) then W2(νK , π) ≤ (Mh− 1)KW2(ν0, π) +
1.65Mh

2−Mh
(hp)1/2.

The proof of this theorem is postponed to Section 7. The factor 1.65 is obtained by upper
bounding 7

√
2/6.

In practice, a relevant approach to getting an accuracy of at most ǫ is to minimize the
upper bound provided by Theorem 1 with respect to h, for a fixed K. Then, one can choose
the smallest K for which the obtained upper bound is smaller than ǫ. One useful observation
is that the upper bound of case (b) is an increasing function of h. Its minimum is always
attained at h = 2/(m + M), which means that one can always look for a step-size in the
interval (0, 2/(m+M)] by minimizing the upper bound in (a). This can be done using standard
line-search methods such as the bisection algorithm.

Note that if the initial value ϑ0 = θ0 is deterministic then, using the notation θ̄ =∫
Rp θπ(dθ), in view of (Durmus and Moulines, 2016, Theorem 1), we have

W2(ν0, π)
2 =

∫

Rp

‖θ0 − θ‖22π(dθ)

= ‖θ0 − θ̄‖22 +
∫

Rp

‖θ̄ − θ‖22π(dθ)

≤ ‖θ0 − θ̄‖22 + p/m. (7)
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Finally, let us remark that if we choose h and K so that

h ≤ 2/(m+M), e−mhKW2(ν0, π) ≤ ε/2, 1.65(M/m)(hp)1/2 ≤ ε/2, (8)

then we have W2(νK , π) ≤ ε. In other words, conditions (8) are sufficient for the density of
the output of the LMC algorithm with K iterations to be within the precision ε of the target
density when the precision is measured using the Wasserstein distance. This readily yields

h ≤ m2ε2

11M2p
∧ 2

m+M
and hK ≥ 1

m
log

(2(‖θ0 − θ̄‖22 + p/m)1/2

ε

)

Assuming m,M and ‖θ0 − θ̄‖22/p to be constants, we can deduce from the last display that
it suffices K = C(p/ε2) log(p/ε2) number of iterations in order to reach the precision level ε.
This fact has been first established in (Dalalyan, 2014) for the LMC algorithm with a warm
start and the total-variation distance. It was later improved by Durmus and Moulines (2016);
Durmus and Moulines (2017), who showed that the same result holds for any starting point
and established similar bounds for the Wasserstein distance. Theorem 1 above can be seen
as a user-friendly version of the corresponding result established by Durmus and Moulines
(2016).

Remark 2.1. Although the upper bound on W2(ν0, π) provided by (7) is relevant for un-
derstanding the order of magnitude of W2(ν0, π), it has limited applicability since the distance
‖θ0 − θ̄‖ might be hard to evaluate. An attractive alternative to that bound is the following1:

W2(ν0, π)
2 =

∫

Rp

‖θ0 − θ‖22π(dθ)

≤ 2

m

∫

Rp

(
f(θ0)− f(θ)−∇f(θ)⊤(θ0 − θ)

)
π(dθ)

=
2

m

(
f(θ0)−

∫

Rp

f(θ)π(dθ) + p
)
.

If f is lower bounded by some known constant, for instance if f ≥ 0, the last inequality
provides the computable upper bound W2(ν0, π)

2 ≤ 2
m

(
f(θ0) + p

)
.

2.2 Guarantees under strong convexity for the variable step LMC

The result of previous section provides a guarantee for the constant step LMC. One may
wonder if using a variable step sizes h = {hk}k∈N can improve the convergence. Note that
in (Durmus and Moulines, 2016, Theorem 5), guarantees for the variable step LMC are es-
tablished. However, they do not lead to a clear message on the choice of the step-sizes. The
next result fills this gap by showing that an appropriate selection of step-sizes improves on
the constant step LMC with an improvement factor logarithmic in p/ǫ2.

Theorem 2. Let us consider the LMC algorithm with varying step-size hk+1 defined by

hk+1 =
2

M +m+ (2/3)m(k −K1)+
, k = 1, 2, . . . (9)

1The second line follows from strong convexity whereas the third line is a consequence of the two identities∫
Rp ∇f(θ)π(dθ) = 0 and

∫
Rp θ

⊤∇f(θ)π(dθ) = p. These identities follow from the fundamental theorem of
calculus and the integration by parts formula, respectively.
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where K1 is the smallest non-negative integer satisfying

K1 ≥
ln

(
W2(ν0, π)/

√
p
)
+ ln(m/M) + (1/2) ln(M +m)

ln(1 + 2m/M−m)
.

For every positive integer k ≥ K1, we have

W2(νk, π) ≤
3.5M

√
p

m
√
M +m+ (2/3)m(k −K1)

. (10)

The step size (9) has two important advantages as compared to the constant steps. The
first advantage is that it is independent of the target precision level ǫ. The second advantage
is that we get rid of the logarithmic terms in the number of iterations required to achieve the
precision level ǫ. Indeed, it suffices K = K1 + (27M2/2m3)(p/ǫ2) iterations to get the right
hand side of (10) smaller than ǫ, where K1 depends neither on the dimension p nor on the
precision level ǫ.

Since the choice of hk+1 in (9) might appear mysterious, we provide below a quick explana-
tion of the main computations underpinning this choice. The main step of the proof of upper
bounds on W2(νk, π), is the following recursive inequality (see Proposition 2 in Section 7)

W2(νk+1, π) ≤ (1−mhk+1)W2(νk, π) + 1.65M
√
p h

3/2
k+1.

Using the notation Bk = 2(m/3)3/2

1.65M
√
p W2(νk, π), this inequality can be rewritten as

Bk+1 ≤ (1−mhk+1)Bk + 2(mhk+1/3)
3/2.

Minimizing the right hand side with respect to hk+1, we find that the minimum is attained
at the stationary point

hk+1 =
3

m
B2

k. (11)

With this hk+1, one checks that the sequence Bk satisfies the recursive inequality

B2
k+1 ≤ B2

k(1−B2
k)

2 ≤ B2
k

1 +B2
k

.

The function g(x) = x/(1 + x) being increasing in (0,∞), we get

B2
k+1 ≤

B2
k

1 +B2
k

≤
B2

k−1

1+B2
k−1

1 +
B2

k−1

1+B2
k−1

=
B2

k−1

1 + 2B2
k−1

.

By repetitive application of the same argument, we get

B2
k+1 ≤

B2
K1

1 + (k + 1−K1)B2
K1

.

The integer K1 was chosen so that B2
K1

≤ 2m
3(M+m) , see (23). Inserting this upper bound in

the right hand side of the last display, we get

B2
k+1 ≤

2m

3(M +m) + 2m(k + 1−K1)
.

Finally, replacing in (11) B2
k by its upper bound derived from the last display, we get the

suggested value for hk+1.
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3. GUARANTEES FOR THE INACCURATE GRADIENT VERSION

In some situations, the precise evaluation of the gradient ∇f(θ) is computationally expen-
sive or practically impossible, but it is possible to obtain noisy evaluations of ∇f at any point.
This is the setting considered in the present section. More precisely, we assume that at any
point ϑk,h ∈ R

p of the LMC algorithm, we can observe the value

Y k,h = ∇f(ϑk,h) + ζk,

where {ζk : k = 0, 1, . . .} is a sequence of random (noise) vectors. The noisy LMC (nLMC)
algorithm is defined as

ϑk+1,h = ϑk,h − hY k,h +
√
2h ξk+1; k = 0, 1, 2, . . . (12)

where h > 0 and ξk+1 are as in (2). The noise {ζk : k = 0, 1, . . .} is assumed to satisfy the
following condition.

Condition N: for some δ > 0 and σ > 0 and for every k ∈ N,

• (bounded bias) E
[∥∥E(ζk|ϑk,h)

∥∥2
2

]
≤ δ2p,

• (bounded variance) E[‖ζk −E(ζk|ϑk,h)‖22] ≤ σ2p,

• (independence of updates) ξk+1 in (12) is independent of (ζ0, . . . , ζk).

The next theorem extends the guarantees of Theorem 1 to the inaccurate-gradient setting
and to the nLMC algorithm.

Theorem 3. Let ϑK,h be the K-th iterate of the nLMC algorithm (12) and νK be its
distribution. If the function f satisfies condition (1) and h ≤ 2/(m+M) then

W2(νK , π) ≤ (1−mh)KW2(ν0, π) + 1.65(M/m)(hp)1/2 +
δ
√
p

m
+

σ2(hp)1/2

1.65M + σ
√
m

. (13)

To the best of our knowledge, this is the first result providing guarantees for sampling from
a distribution in the scenario when precise evaluations of the log-density or its gradient are
not available. Even in an asymptotic set-up, this problem apparently has not been the object
of any investigation. The closely related problem of computing an average value with respect
to a distribution, when the gradient of its log-density is known up to an additive noise, has
been studied by Nagapetyan et al. (2017); Teh et al. (2016); Vollmer and Zygalakis (2015).
Note that these settings are of the same flavor as those of stochastic approximation, an active
area of research in optimization and machine learning.

To understand the potential scope of applicability of Theorem 3, let us consider a generic
example in which f(θ) is the average of n functions defined through independent random
variables X1, . . . ,Xn:

f(θ) =
1

n

n∑

i=1

ℓ(θ,Xi).

When the gradient of ℓ(θ,Xi) with respect to parameter θ is hard to compute, one can replace
the evaluation of ∇f(ϑk,h) at each step k by that of Yk = ∇θℓ(ϑk,h,XNk

), where Nk is a
random variable uniformly distributed in {1, . . . , n} and independent of ϑk,h. Under suitable
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assumptions, this random vector satisfies the conditions of Theorem 3 with δ = 0 and constant
σ2. Therefore, if we analyze the upper bound provided by (13), we see that the last term, due
to the subsampling, is of the same order of magnitude as the second term. Thus, using the
subsampled gradient in the LMC algorithm does not cause a significant deterioration of the
precision while reducing considerably the computational burden.

Note that Theorem 3 allows to handle situations in which the approximations of the gradient
are biased. This bias is controlled by the parameter δ. Such a bias can appear when using
deterministic approximations of integrals or differentials. For instance, in statistical models
with latent variables, the log-likelihood has often an integral form. Such integrals can be
approximated using quadrature rules, yielding a bias term, or Monte Carlo methods, yielding
a variance term.

In the preliminary version (Dalalyan, 2017) of this work, we made a mistake by claiming
that the stochastic gradient version of the LMC, introduced in (Welling and Teh, 2011) and
often referred to as Stochastic Gradient Langevin Dynamics (SGLD), has an error of the same
order as the non-stochastic version of it. This claim is wrong, since when f(θ) =

∑n
i=1 ℓ(θ,Xi)

with a strongly convex function θ 7→ ℓ(θ, x) and iid variables X1, . . . ,Xn, we have m and M
proportional to n. Therefore, choosing Yk = n∇θℓ(ϑk,h,XNk

) as a noisy version of the gradient
(where Nk is a uniformly over {1, . . . , n} distributed random variable independent of ϑk,h),
we get δ = 0 but σ2 proportional to n2. Therefore, the last term in (13) is of order (nhp)1/2

and dominates the other terms. Furthermore, replacing Yk by Yk = n
s

∑s
j=1∇θℓ(ϑk,h,XNj

k
)

with iid variables N1
k , . . . , N

s
k does not help, since then σ2 is of order n2/s and the last term in

(13) is of order (nhp/s)1/2, which is still larger than the term (M/m)(hp)1/2. This discussion
shows that Theorem 3 does not provide any interesting result when applied to SGLD. For a
more in-depth analysis of the SGLD, we refer the reader to (Nagapetyan et al., 2017; Raginsky
et al., 2017; Xu et al., 2017).

It is also worth mentioning here that another example of approximate gradient—based on
a quadratic approximation of the log-likelihood of the generalized linear model—has been
considered in (Huggins and Zou, 2017, Section 5). It corresponds, in terms of condition N, to
a situation in which the variance σ2 vanishes but the bias δ is non-zero.

An important ingredient of the proof of Theorem 3 is the following simple result, which
can be useful in other contexts as well.

Lemma 1. Let A, B and C be given non-negative numbers such that A ∈ (0, 1). Assume
that the sequence of non-negative numbers {xk}k=0,1,2,... satisfies the recursive inequality

x2k+1 ≤ [(1−A)xk + C]2 +B2

for every integer k ≥ 0. Then, for all integers k ≥ 0,

xk ≤ (1−A)kx0 +
C

A
+

B2

C +
√
AB

.

Thanks to this lemma, the upper bound on the Wasserstein distance provided by (13) is
sharper than the one proposed in (Dalalyan, 2017).
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4. GUARANTEES UNDER ADDITIONAL SMOOTHNESS ASSUMPTIONS

When the function f has Lipschitz continuous Hessian, one can get improved rates of
convergence. This has been noted by (Dalalyan, 2014), who proposed to use a modified version
of the LMC algorithm, the LMC with Ozaki discretization, in order to take advantage of the
smoothness of the Hessian. Durmus and Moulines (2016) showed that the same rate in terms
of p and ǫ can be achieved by the original LMC without any modification.

Condition F: the function f is twice differentiable and for some positive numbers m, M and
M2,

• (strong convexity) ∇2f(θ) � mIp, for every θ ∈ R
p,

• (bounded second derivative) ∇2f(θ) � MIp, for every θ ∈ R
p,

• (further smoothness) ‖∇2f(θ)−∇2f(θ′)‖ ≤ M2‖θ − θ′‖2, for every θ ∈ R
p.

Theorem 4. Let ϑK,h be the K-th iterate of the nLMC algorithm (12) and νK be its
distribution. Assume that conditions F and N are satisfied. Then, for every h ≤ 2/(m+M)

W2(νK , π) ≤ (1−mh)KW2(ν0, π) +
M2hp

2m
+

11Mh
√
Mp

5m
+

δ
√
p

m
+

2σ2
√
hp

M2
√
hp+ 2σ

√
m
.

In the last inequality, 11/5 is an upper bound for 0.5 + 2
√

2/3 ≈ 2.133. Theorem 4 is
essentially a constant step-size version of (Durmus and Moulines, 2016, Theorem 8), with
optimized constants and an extension to the scenario of inaccurate gradient.

When applying the nLMC algorithm to sample from a target density, the user may usually
specify four parameters: the step-size h, the number of iterations K, the tolerated precision δ
of the deterministic approximation and the precision σ of the stochastic approximation. An
attractive feature of Theorem 4 is that the contributions of these four parameters are well
separated, especially if we upper bound the last term by 2σ2/M2. As a consequence, in order
to have an error of order ǫ in Wasserstein distance, we might choose: σ at most of order

√
ǫ,

δ at most of order mǫ/
√
p, h of order ǫ/p and K of order (p/ǫ) log(p/ǫ). Akin to Theorem 2,

one can use variable step-sizes to avoid the logarithmic factor; we leave these computations
to the reader2.

Under the assumption of Lipschitz continuity of the Hessian of f , one may wonder whether
second-order methods that make use of the Hessian in addition to the gradient are able to
outperform the standard LMC algorithm. The most relevant candidate algorithms for this are
the LMC with Ozaki discretization (LMCO) and a variant of it, LMCO’, a slightly modified
version of an algorithm introduced in (Dalalyan, 2014). The LMCO is defined as follows: For
every k ≥ 0, we set Hk = ∇2f(ϑLMCO

k,h ), which is an invertible p×p matrix since f is strongly
convex, and define

Mk =
(
Ip − e−hHk

)
H

−1
k , Σk =

(
Ip − e−2hHk

)
H

−1
k ,

ϑLMCO
k+1,h = ϑLMCO

k,h −Mk∇f
(
ϑLMCO
k,h

)
+Σ

1/2
k ξk+1, (14)

where {ξk : k ∈ N} is a sequence of independent random vectors distributed according
to the Np(0, Ip) distribution. The LMCO’ algorithm is based on approximating the matrix

2A bound of that type is established in (Bonis, 2016, Corollary 3).
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exponentials by linear functions, more precisely, for H′
k = ∇2f(ϑLMCO′

k,h ),

ϑLMCO′

k+1,h = ϑLMCO′

k,h − h
(
Ip −

1

2
hH′

k

)
∇f

(
ϑLMCO′

k,h

)
+

√
2h

(
Ip − hH′

k +
1

3
h2(H′

k)
2
)1/2

ξk+1.

(15)

Let us mention right away that the stochastic perturbation present in the last display can be
computed in practice without taking the matrix square-root. Indeed, it suffices to generate
two independent standard Gaussian vectors ηk+1 and η′

k+1; then the random vector

(
Ip − (1/2)hH′

k

)
ηk+1 + (

√
3/6)hH′

kη
′
k+1

has exactly the same distribution as the vector
(
Ip − hH′

k + (1/3)h2(H′
k)

2
)1/2

ξk+1.

In the rest of this section, we provide guarantees for methods LMCO and LMCO’. Note
that we consider only the case where the gradient and the Hessian of f are computed exactly,
that is without any approximation.

Theorem 5. Let νLMCO
K and νLMCO′

K be, respectively, the distributions of the K-th iterate
of the LMCO algorithm (14) and the LMCO’ algorithm (15) with an initial distribution ν0.
Assume that conditions F and N are satisfied. Then, for every h ≤ m/M2,

W2(ν
LMCO
K , π) ≤ (1− 0.25mh)kW2(ν0, π) +

11.5M2h(p + 1)

m
. (16)

If, in addition, h ≤ 3m/4M2, then

W2(ν
LMCO′

K , π) ≤ (1− 0.25mh)kW2(ν0, π) +
1.3M2h2

√
Mp

m
+

7.3M2h(p + 1)

m
. (17)

A very rough consequence of this theorem is that one has similar theoretical guarantees for
the LMCO and the LMCO’ algorithms, since in most situations the middle term in the right
hand side of (17) is smaller than the last term. On the other hand, the per-iteration cost of the
modified algorithm LMCO’ is significantly smaller than the per-iteration cost of the original
LMCO. Indeed, for the LMCO’ there is no need to compute matrix exponentials neither to
invert matrices, one only needs to perform matrix-vector multiplication for p × p matrices.
Note that for many matrices such a multiplication operation might be very cheap using the
fast Fourier transform or other similar techniques. In addition, the computational complexity
of the Hessian-vector product is provably of the same order as that of evaluating the gradient,
see (Griewank, 1993). Therefore, one iteration of the LMCO’ algorithm is not more costly
than one iteration of the LMC. At the same time, the error bound (17) for the LMCO’ is
smaller than the one for the LMC provided by Theorem 4. Indeed, the term Mh

√
Mp present

in the bound of Theorem 4 is generally of larger order than the term (Mh)2
√
Mp appearing

in (17).

5. RELATION WITH OPTIMIZATION

We have already mentioned that the LMC algorithm is very close to the gradient descent
algorithm for computing the minimum θ∗ of the function f . However, when we compare the
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guarantees of Theorem 1 with those available for the optimization problem, we remark the
following striking difference. The approximate computation of θ∗ requires a number of steps of
the order of log(1/ε) to reach the precision ε, whereas, for reaching the same precision in sam-
pling from π, the LMC algorithm needs a number of iterations proportional to (p/ε2) log(p/ε).
The goal of this section is to explain that this, at first sight very disappointing behavior of
the LMC algorithm is, in fact, continuously connected to the exponential convergence of the
gradient descent.

The main ingredient for the explanation is that the function f(θ) and the function fτ (θ) =
f(θ)/τ have the same point of minimum θ∗, whatever the real number τ > 0. In addition, if
we define the density function πτ (θ) ∝ exp

(
− fτ (θ)

)
, then the average value

θ̄τ =

∫

Rp

θ πτ (θ) dθ

tends to the minimum point θ∗ when τ goes to zero. Furthermore, the distribution πτ (dθ)
tends to the Dirac measure at θ∗. Clearly, fτ satisfies (1) with the constants mτ = m/τ and
Mτ = M/τ . Therefore, on the one hand, we can apply to πτ claim (a) of Theorem 1, which
tells us that if we choose h = 1/Mτ = τ/M , then

W2(νK , πτ ) ≤
(
1− m

M

)K
W2(δθ0

, πτ ) + 1.65
(M
m

)(pτ
M

)1/2
. (18)

On the other hand, the LMC algorithm with the step-size h = τ/M applied to fτ reads as

ϑk+1,h = ϑk,h −
1

M
∇f(ϑk,h) +

√
2τ

M
ξk+1; k = 0, 1, 2, . . . (19)

When the parameter τ goes to zero, the LMC sequence (19) tends to the gradient descent
sequence θk. Therefore, the limiting case of (18) corresponding to τ → 0 writes as

‖θ(K) − θ∗‖2 ≤
(
1− m

M

)K
‖θ0 − θ∗‖2,

which is a well-known result in Optimization. This clearly shows that Theorem 1 is a natural
extension of the results of convergence from optimization to sampling.

Such an analogy holds true for the Newton method as well. Its counterpart in sampling
is the LMCO algorithm. Indeed, one easily checks that if f is replaced by fτ with τ going
to zero, then, for fixed step-size h, the matrix Σk in (14) tends to zero. This implies that
the stochastic perturbation vanishes. On the other hand, the term Mk,τ∇fτ (ϑ

LMCO
k,h ) tends

to {∇2f(ϑLMCO
k,h )}−1∇f(ϑLMCO

k,h ), as τ → 0. Thus, the updates of the Newton algorithm can
be seen as the limit case, when τ goes to zero, of the updates of the LMCO.

However, if we replace f by fτ in the upper bounds stated in Theorem 5 and we let τ go
to zero, we do not retrieve the well-known guarantees for the Newtons method. The main
reason is that Theorem 5 describes the behavior of the LMCO algorithm in the regime of
small step-size h, whereas Newton’s method corresponds to (a limit case of) the LMCO with
a fixed h. Using arguments similar to those employed in the proof of Theorem 5, one can
establish the following result, the proof of which is postponed to Section 7.
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Proposition 1. Let νLMCO
K be the distributions of the K-th iterate of the LMCO algo-

rithm (14) with an initial distribution ν0. Assume that conditions F and N are satisfied. Then,
for every h > 0 and K ∈ N,

W2(ν
LMCO
K , π) ≤ 2m

M2

(
wK exp(vKw−2K

K )
)2K

(20)

with

wK =
M2W2K+1(ν0, π)

2m
+

1

2
e−mh, and vK =

2M2M
3/2

√
2p+ 2K +m3e−mh

m3
.

If we replace in the right hand side of (20) the quantities m, M and M2, respectively, by
mτ = m/τ , Mτ = M/τ and M2,τ = M2/τ , and we let τ go to zero, then it is clear that the
term vK vanishes. On the other hand, if ν0 is the Dirac mass at some point θ0, then wK

converges to M2‖θ0−θ∗‖2/(2m). Therefore, for Newton’s algorithm as a limiting case of (20)
we get

‖θNewton
K − θ∗‖2 ≤

2m

M2

(
M2‖θ0 − θ∗‖2

2m

)2K

.

The latter provides the so called quadratic rate of convergence, which is a well-known result
that can be found in many textbooks; see, for instance, (Chong and Zak, 2013, Theorem 9.1).

There are certainly other interesting connections to uncover between sampling and opti-
mization. One can think of lower bounds for sampling or finding a sampling counterpart of
Nesterov acceleration. Some recent advances on the gradient flow (Wibisono et al., 2016)
might be useful for achieving these goals.

6. CONCLUSION

We have presented easy-to-use finite-sample guarantees for sampling from a strongly log-
concave density using the Langevin Monte-Carlo algorithm with a fixed step-size and extended
it to the case where the gradient of the log-density can be evaluated up to some error term.
Our results cover both deterministic and random error terms. We have also demonstrated that
if the log-density f has a Lipschitz continuous second-order derivative, then one can choose
a larger step-size and obtain improved convergence rate.

We have also uncovered some analogies between sampling and optimization. The under-
lying principle is that an optimization algorithm may be seen as a limit case of a sampling
algorithm. Therefore, the results characterizing the convergence of the optimization schemes
should have their counterparts for sampling strategies. We have described these analogues for
the steepest gradient descent and for the Newton algorithm. However, while in the optimiza-
tion the relevant characteristics of the problem are the dimension p, the desired accuracy ǫ
and the condition number M/m, the problem sampling involves an additional characteristic
which is the scale given by the strong-convexity constant m. Indeed, if we increase m by
keeping the condition number M/m constant, the number of iterations for the LMC to reach
the precision ǫ will decrease. In this respect, we have shown that the LMC with Ozaki dis-
cretization, termed LMCO, has a better dependence on the overall scale of f than the original
LMC algorithm. However, the weakness of the LMCO is the high computational cost of each
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iteration. Therefore, we have proposed a new algorithm, LMCO’, that improves the LMC in
terms of its dependence on the scale and each iteration of LMCO’ is computationally much
cheaper than each iteration of the LMCO.

Another interesting finding is that, in the case of accurate gradient evaluations (i.e., when
there is no error in gradient evaluations), a suitably chosen variable step-size leads to loga-
rithmic improvement in the convergence rate of the LMC algorithm.

Interesting directions for future research are establishing lower bounds in the spirit of those
existing in optimization, obtaining user-friendly guarantees for computing the posterior mean
or for sampling from a non-smooth density. Some of these problems have already been tackled
in several papers mentioned in previous sections, but we believe that the techniques developed
in this work might be helpful for revisiting and deepening the existing results.

7. PROOFS

The basis of the proofs of all the theorems stated in previous sections is a recursive inequality
that upper bounds the error at the step k+1, W2(νk+1, π), by an expression involving the error
of the previous step, W2(νk, π). We will also make repeated use of the Minkowski inequality
and its integral version

{
E

[(∫ b

a
Xt dt

)p]}1/p

≤
∫ b

a

{
E
[
|Xt|p

]}1/p
dt, ∀p ≥ N

∗, (21)

where X is a random process almost all paths of which are integrable over the interval [a, b].
Furthermore, for any random vector X, we define the norm ‖X‖L2

= (E[‖X‖22])1/2.

Proposition 2. Let us introduce the constant ̺k+1 = max(1−mhk+1,Mhk+1−1) (since
h ∈ (0, 2/M), this value ̺ satisfies 0 < ̺ < 1). If f satisfies (1) and hk+1 ≤ 2/M , then

W2(νk+1, π)
2 ≤

{
̺k+1W2(νk, π) + αM(h3k+1p)

1/2 + hk+1δ
√
p
}2

+ σ2h2k+1p,

with α = 7
√
2/6 ≤ 1.65.

Proof. To simplify notation, and since there is no risk of confusion, we will write h instead
of hk+1. Let L0 be a random vector drawn from π such that W2(νk, π) = E[‖L0 − ϑk,h‖22]
and E[ζk|ϑk,h,L0] = E[ζk|ϑk,h]. Let W be a p-dimensional Brownian Motion independent of
(ϑk,h,L0, ζk), such that Wh =

√
h ξk+1. We define the stochastic process L so that

Lt = L0 −
∫ t

0
∇f(Ls) ds+

√
2Wt, ∀ t > 0. (22)

It is clear that this equation implies that

Lh = L0 −
∫ h

0
∇f(Ls) ds+

√
2Wh

= L0 −
∫ h

0
∇f(Ls) ds+

√
2h ξk+1.
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Furthermore, {Lt : t ≥ 0} is a diffusion process having π as the stationary distribution. Since
the initial value L0 is drawn from π, we have Lt ∼ π for every t ≥ 0.

Let us denote ∆k = L0 − ϑk,h and ∆k+1 = Lh − ϑk+1,h. We have

∆k+1 = ∆k + hY k,h −
∫ h

0
∇f(Lt) dt

= ∆k − h
(
∇f(ϑk,h +∆k)−∇f(ϑk,h)︸ ︷︷ ︸

:=U

)
+ hζk −

∫ h

0

(
∇f(Lt)−∇f(L0)

)
dt

︸ ︷︷ ︸
:=V

.

Using the equalities E[ζk|∆k,U ,V ] = E[ζk|ϑk,h,L0,W] = E[ζk|ϑk,h,L0] = E[ζk|ϑk,h], we
get

‖∆k+1‖2L2
=

∥∥∆k − hU − V + hE[ζk|ϑk,h]
∥∥2
L2

+ h2
∥∥ζk −E[ζk|ϑk,h]

∥∥2
L2

≤
∥∥∆k − hU − V + hE[ζk|ϑk,h]

∥∥2
L2

+ σ2h2p

≤
{
‖∆k − hU‖L2

+ hδ
√
p+ ‖V ‖L2

}2
+ σ2h2p.

We need now three technical lemmas. The proofs of Lemma 2 and Lemma 3 can be found
in (Dalalyan, 2017). Lemma 4 is an improved version of (Dalalyan, 2017, Lemma 3); its proof
is postponed to Section 7.6.

Lemma 2. It holds that ‖∆k − hU‖2 ≤ ̺‖∆k‖2.

Lemma 3. If the function f is continuously differentiable and the gradient of f is Lipschitz
with constant M , then

∫
Rp ‖∇f(x)‖22 π(x) dx ≤ Mp.

Lemma 4. If the function f has a Lipschitz-continuous gradient with the Lipschitz con-
stant M , L is the Langevin diffusion (22) and V (a) =

∫ a+h
a

(
∇f(Lt)−∇f(La)

)
dt for some

a ≥ 0, then

‖V (a)‖L2
≤ 1

2

(
h4M3p

)1/2
+

2

3
(2h3p)1/2M.

Using Lemma 2 and Lemma 4, as well as the trivial inequality W2(νk+1, π)
2 ≤ E[‖∆k+1‖22],

we get

W2(νk+1, π)
2 ≤

{
̺W2(νk, π) + αM(h3p)1/2 + hδ

√
p
}2

+ σ2h2p,

with α = 7
√
2/6 ≤ 1.65.

7.1 Proof of Theorem 1

Using Proposition 2 with σ = δ = 0, we get W2(νk+1, π) ≤ ̺W2(νk, π) + ‖V ‖L2
for all

k ∈ N. In view of Lemma 4, this yields

W2(νk+1, π) ≤ ̺W2(νk, π) + αM(h3p)1/2.
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Using this inequality repeatedly for k + 1, k, k − 1, . . . , 1, we get

W2(νk+1, π) ≤ ̺k+1W2(ν0, π) + αM(h3p)1/2(1 + ̺+ . . .+ ̺k)

≤ ̺k+1W2(ν0, π) + αM(h3p)1/2(1− ̺)−1.

This completes the proof.

7.2 Proof of Theorem 2

Let us denote α = 7
√
2/6 ≤ 1.65. Theorem 1 implies that using the step-size hk = 2/(M +

m) for k = 1, . . . ,K1, we get

W2(νK1
, π) ≤

(
1 +

2m

M −m

)−K1

W2(ν0, π) +
αM

m

( 2p

m+M

)1/2

≤ 3.5M

m

( p

M +m

)1/2
. (23)

Starting from this iteration K1, we use a decreasing step-size

hk+1 =
2

M +m+ (2/3)m(k −K1)
.

Let us show by induction over k that

W2(νk, π) ≤
3.5M

m

(
p

M +m+ (2/3)m(k −K1)

)1/2

, ∀ k ≥ K1. (24)

For k = K1, this inequality is true in view of (23). Assume now that (24) is true for some k.
For k + 1, we have

W2(νk+1, π) ≤ (1−mhk+1)W2(νk, π) + αM
√
p h

3/2
k+1

≤ (1−mhk+1)
3.5M

√
p (hk+1/2)

1/2

m
+ αM

√
p h

3/2
k+1

≤ (1− 1

3
mhk+1)

3.5M
√
p (hk+1/2)

1/2

m
.

One can check that

(1− 1

3
mhk+1)(hk+1/2)

1/2 =

√
3 [m+ 3M + 2m(k −K1)]

[3m+ 3M + 2m(k −K1)]3/2

≤
√
3 [m+ 3M + 2m(k −K1)]

1/2

3m+ 3M + 2m(k −K1)

≤
√
3

[3m+ 3M + 2m(k + 1−K1)]1/2
.

This completes the proof of the theorem.
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7.3 Proof of Theorem 3

As explained in Section 3, the main new ingredient of the proof is Lemma 1, that has to
be combined with Proposition 2. We postpone the proof of Lemma 1 to Section 7.6 and do it
in a more general form (see Lemma 7).

In view of Proposition 2, we have

W2(νk+1, π)
2 ≤

{
(1−mh)W2(νk, π) + αM(h3p)1/2 + hδ

√
p
}2

+ σ2h2p.

We apply now Lemma 1 with A = mh, B = σh
√
p and C = αM(h3p)1/2 + hδ

√
p, which

implies that

W2(νk, π) ≤ (1−mh)kW2(ν0, π) +
αM(hp)1/2 + δ

√
p

m
+

σ2h
√
p

αMh1/2 + δ + (mh)1/2 σ
.

This completes the proof of the theorem.

7.4 Proof of Theorem 4

Using the same construction and the same definitions as in the proof of Proposition 2, for
∆k = L0 − ϑk,h, we have

∆k+1 = ∆k + hY k,h −
∫

Ik

∇f(Lt) dt

= ∆k − h
(
∇f(ϑk,h +∆k)−∇f(ϑk,h)︸ ︷︷ ︸

:=U

)
−

√
2

∫ h

0

∫ t

0
∇2f(Ls)dWs dt

︸ ︷︷ ︸
:=S

+hζk

−
∫ h

0

(
∇f(Lt)−∇f(L0)−

√
2

∫ t

0
∇2f(Ls)dWs

)
dt

︸ ︷︷ ︸
:=V̄

.

Using the following equalities of conditional expectations E[ζk|∆k,U , V̄ ] = E[ζk|ϑk,h,L0,W] =
E[ζk|ϑk,h,L0] = E[ζk|ϑk,h] and E[Sh|ϑk,h,L0] = 0, we get

‖∆k+1‖2L2
=

∥∥∆k − hU − V̄ −
√
2Sh + hE[ζk|ϑk,h]

∥∥2
L2

+ σ2h2p

≤
{(

‖∆k − hU‖2L2
+ 2‖Sh‖2L2

)1/2
+ hδ

√
p+ ‖V̄ ‖L2

}2
+ σ2h2p.

In addition, we have

‖Sh‖2L2
=

∥∥∥
∫ h

0
(h− s)∇2f(Ls) dWs

∥∥∥
2

L2

=

∫ h

0
(h− s)2E[‖∇2f(Ls)‖2F ] ds ≤ (1/3)M2h3p.

Setting xk = ‖∆k‖L2
= W2(νk, π) and using Lemma 2, this yields

x2k+1 ≤
{(

(1−mh)2x2k + (2/3)M2h3p
)1/2

+ hδ
√
p+ ‖V̄ ‖L2

}2
+ σ2h2p.

Let us define A = mh, F = (2/3)M2h3p, G = σ2h2p and3

C = hδ
√
p+ 0.5M2h

2p+ 0.5M3/2h2
√
p.

3In view of Lemma 6 in Section 7.6, we have hδ
√
p+ ‖V̄ ‖L2

≤ C.
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Then
x2k+1 ≤

{(
(1−A)2x2k + F

)1/2
+ C

}2
+G.

One can deduce from this inequality that x2k+1 ≤
(
(1−A)xk+C

)2
+F+G+2C

√
F . Therefore,

using (41) of Lemma 7 below, we get

xk ≤ (1−A)kx0 +
C

A
+

F +G+ 2C
√
F

C +
(
A(F +G+ 2C

√
F )

)1/2

≤ (1−A)kx0 + (C/A) + 2(F/A)1/2 +
G

C +
√
AG

.

Replacing A,C,F and G by their respective expressions, we get the claim of the theorem.

7.5 Proof of Theorem 5

To ease notation, throughout this proof, we will write νk and ν ′k instead of νLMCO
k and

νLMCO′

k , respectively.

Let D0 ∼ νk and L0 ∼ π be two random variables such that ‖D0 − L0‖2L2
= W2(νk, π).

Let W be a p-dimensional Brownian motion independent of (D0,L0). We define L to be the
Langevin diffusion process (22) driven by W and starting at L0, whereas D is the process
starting at D0 and satisfying the stochastic differential equation

dDt = −[∇f(D0) +∇2f(D0)(Dt −D0)] dt+
√
2 dWt, t ≥ 0.

This is an Ornstein-Uhlenbeck process. It can be expressed explicitly as a function of D0

and W. The corresponding expression implies that Dh ∼ νk+1 and, hence, W2(νk+1, π) ≤
‖Dh −Lh‖2L2

.

An important ingredient of our proof is the following version of the Gronwall lemma, the
proof of which is postponed to Section 7.6.

Lemma 5. Let α : [0, T ]×Ω → R
p be a continuous semi-martingale and H : [0, T ]×Ω →

R
p×p be a random process with continuous paths in the space of all symmetric p× p matrices

such that HsHt = HtHs for every s, t ∈ [0, T ]. If x : [0, T ] × Ω → R
p is a semi-martingale

satisfying the identity

xt = αt −
∫ t

0
Hsxs ds, ∀t ∈ [0, T ], (25)

then, for every t ∈ [0, T ],

xt = exp
{
−

∫ t

0
Hs ds

}
α0 +

∫ t

0
exp

{
−

∫ t

s
Hu du

}
dαs. (26)

We denote Xt = Lt −L0 − (Dt −D0), where Dt is the random process defined by

dDt = −[∇f(D0) +∇2f(D0)(Dt −D0)] dt+
√
2 dWt, D0 ∼ νk, t ∈ [0, h]
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and Lt is the Langevin diffusion driven by the same Wiener process W and with initial
condition L0 ∼ π. It is clear that

Xt = −
∫ t

0
∇f(Ls) ds +

∫ t

0
[∇f(D0) +∇2f(D0)(Ds −D0)] ds

= −
∫ t

0

{
∇f(Ls)−∇f(D0)−∇2f(D0)(Ls −L0)

}
ds−

∫ t

0
∇2f(D0)Xs ds.

Using Lemma 5, we get

Xt = −
∫ t

0
e−s∇2f(D0)

{
∇f(Ls)−∇f(D0)−∇2f(D0)(Ls −L0)

}
ds

=

∫ t

0
e−s∇2f(D0) ds[∇f(D0)−∇f(L0)]

−
∫ t

0
e−s∇2f(D0)

{
∇f(Ls)−∇f(L0)−∇2f(L0)(Ls −L0)

}
ds

−
∫ t

0
e−s∇2f(D0)[∇2f(D0)−∇2f(L0)]

∫ s

0
∇f(Lu) du ds

+
√
2

∫ t

0
e−s∇2f(D0)[∇2f(D0)−∇2f(L0)]Ws ds. (27)

Let us set ∆t = Lt − Dt. We have Xt = ∆t − ∆0 = At − Bt − Ct + St, where At, Bt,
Ct and St stand for the four integrals in (27). We now evaluate these terms separately. For
the first one, using the notation H0 = ∇2f(D0) and the identity ∇f(L0) − ∇f(D0) =∫ 1
0 ∇2f(D0 + x∆0) dx∆0, we get

‖∆0 +At‖2 ≤ ‖∆0 − t
(
∇f(L0)−∇f(D0)

)
‖2 +

∫ t

0
‖I− e−sH0‖ ds

∥∥∇f(L0)−∇f(D0)
∥∥
2

≤ (1−mt+ 0.5M2t2)‖∆0‖2. (28)

For the term Bt with t ≤ h ≤ m/M2 ≤ 1/M , we can apply (39) to infer that

‖Bt‖2L2
≤ 0.88M2t

2(p2 + 2p)1/2. (29)

As for Ct, in view of the inequality ‖∇2f(L0)−∇2f(D0)‖ ≤ M2‖∆0‖2∧M ≤
√

MM2‖∆0‖2,
we have

‖Ct‖2 ≤
√
MM2‖∆0‖2

∫ t

0

∫ s

0
‖∇f(Lu)‖2 du ds

≤ µ‖∆0‖2 + (4µ)−1MM2

(∫ t

0
(t− u)‖∇f(Lu)‖2 du

)2

.

On the other hand, the fact that E[‖∇f(Lu)‖42] ≤ M2(p2 + 2p) yields

(∫ t

0
(t− u)(E[‖∇f(Lu)‖42])1/4 du

)2

≤ Mt4(p2 + 2p)1/2

4
. (30)

This implies the inequality

‖Ct‖L2
≤ µW2(νk, π) + (16µ)−1M2M2t

4(p+ 1). (31)
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Finally, using the integration by parts formula for semi-martingales, one can easily write St

as a stochastic integral with respect to W and derive from that representation the inequality

‖St‖2L2
≤ 2E

[ ∫ t

0

∥∥∥∥
∫ t

u
e−sH0 ds

(
∇2f(L0)−∇2f(D0)

)∥∥∥∥
2

F

du

]

≤ 2pE[(M2‖∆0‖2 ∧M)2]

∫ t

0
(t− u)2 du ≤ (2/3)M2Mpt3‖∆0‖2L2

. (32)

Putting all these pieces together, taking the expectation, using the Minkowski inequality, the
equality E[(∆0 +Ah)

⊤Sh] = 0 and the inequality
√
a2 + b ≤ a+ b/(2a), we get

‖∆h‖2L2
= ‖∆0 +Ah −Bh − Ch + Sh‖2L2

≤
(
‖∆0 +Ah‖2L2

+ ‖Sh‖2L2

)1/2
+ ‖Bh‖2L2

+ ‖Ch‖2L2

≤
(
1−mh+ 0.5M2h2 + µ

)
‖∆0‖2L2

+
M2Mph3

3(1 −mh+ 0.5M2h2)

+ 0.88M2h
2(p2 + 2p)1/2 +

M2M2h
4

16µ
(p+ 1). (33)

Let µ be any real number smaller than 0.5h(m−0.5M2h); Eq. (33) and the inequality p2+2p ≤
(p + 1)2 yield

W2(νk+1, π) ≤ (1− µ)W2(νk, π) +
M2Mph3

3(1− 2µ)
+ 0.88M2h

2(p+ 1) +
M2M2h

4

16µ
(p+ 1).

Since h ≤ m/M2, we can choose µ = 0.25mh so that 1− 2µ = 1− 0.5mh ≥ 0.5 and

W2(νk+1, π) ≤ (1− 0.25mh)W2(νk, π) +
2M2Mph3

3
+ 0.88M2h

2(p+ 1) +
M2M2h

3

4m
(p+ 1)

≤ (1− 0.25mh)W2(νk, π) + 1.8M2h
2(p+ 1).

This recursion implies the inequality

W2(νk, π) ≤ (1− 0.25mh)kW2(ν0, π) +
1.8M2h(p+ 1)

0.25m

= (1− 0.25mh)kW2(ν0, π) +
7.2M2h(p+ 1)

m
.

This completes the proof of claim (16) of the theorem.

To establish inequality (17), we follow the same steps as in the proof of (16), with a slightly
different choice of the process D. More precisely, we define D by

Dt −D0 = −(tIp − 0.5t2∇2f(D0))∇f(D0) +
√
2

∫ t

0
(I− (t− u)∇2f(D0)) dWu.

One can check that the conditional distribution of Dh given D0 = x coincides with the
conditional distribution of ϑLMCO′

k+1,h given ϑLMCO′

k,h = x. Therefore, if D0 ∼ ν ′k, then Dh ∼ ν ′k+1

and, consequently, W2(ν
′
k+1, π)

2 ≤ E[‖Dh −Lh‖22].
To ease notation, we set H0 = ∇2f(D0). The process D satisfies the SDE

dDt = −
[
(Ip − t∇2f(D0))∇f(D0) +

√
2H0Wt

]
dt+

√
2 dWt,
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which implies that

dDt =−
[
∇f(D0) +∇2f(D0)(Dt −D0)

]
dt+

√
2 dWt

− 0.5t2H2
0∇f(D0) dt−

√
2H2

0

∫ t

0
(t− u) dWu dt.

Proceeding in the same way as for getting (27), we arrive at the decomposition Xt = ∆t −
∆0 = At−Bt−Ct+St−Et−Ft, where At, Bt, Ct and St stand for the four integrals in (27)
whereas Et and Ft are

Et = 0.5

∫ t

0
e−sH0s2 dsH2

0∇f(D0)

Ft =
√
2H2

0

∫ t

0
e−sH0

∫ s

0
(s− u) dWu ds.

Using the properties of the stochastic integral, we get

E[‖Fh‖22] = 2E
[∥∥∥H2

0

∫ h

0
e−sH0

∫ s

0
(s− u) dWu ds

∥∥∥
2

2

]

= 2E
[∥∥∥

∫ h

0

∫ h

u
H

2
0e

−sH0(s− u) ds dWu

∥∥∥
2

2

]

= 2

∫ h

0

∥∥∥
∫ h

u
H

2
0e

−sH0(s− u) ds
∥∥∥
2

F
du

≤ 2M4p

∫ h

0

(∫ h

u
(s− u) ds

)2
du =

M4h5p

10
. (34)

On the other hand,

‖Eh‖2 ≤ 0.5M2

∫ h

0
s2 ds‖∇f(D0)‖2 ≤

M2h3

6

(
‖∇f(L0)‖2 +M‖∆0‖2

)
,

which, in view of Lemma 3, implies that

‖Eh‖2L2
≤ M2h3

6

(√
Mp+MW2(ν

′
k, π)

)
. (35)

Proceeding as in (33) and using (30), we get

‖∆h‖L2
= ‖∆0 +Ah −Bh − Ch + Sh − Eh − Fh‖L2

≤ ‖∆0 +Ah + Sh − Fh‖L2
+ ‖Bh‖L2

+ ‖Ch‖L2
+ ‖Eh‖L2

≤ (‖∆0 +Ah‖2L2
+ ‖Sh − Fh‖2L2

)1/2 + ‖Bh‖L2
+ ‖Ch‖L2

+ ‖Eh‖L2
. (36)

Using the last but one estimate in (32), in conjunction with (34), we get inequalities

‖Sh‖2L2
≤ (2/3)M2Mh3pW2(ν

′
k, π) and |E[S⊤

h Fh]| ≤ (1/
√
15)M2M2h

4pW2(ν
′
k, π),

which, for h ≤ 3m/(4M2), imply that

‖Sh − Fh‖2L2
≤ (2/3)M2Mh3pW2(ν

′
k, π) + (2/

√
15)M2M2h

4pW2(ν
′
k, π) + (1/10)M4h5p

≤ 1.06M2Mh3pW2(ν
′
k, π) + 0.1M4h5p.
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Injecting this bound, (28), (29), (31) and (35) in (36), we arrive at

‖∆h‖L2
≤

{[
(1−mh+ 0.5M2h2)2W2(ν

′
k, π)

2 + 1.06M2Mh3pW2(ν
′
k, π) + 0.1M4h5p

}1/2

+ 0.88M2h
2(p+ 1) +

(
µ+

M3h3

6

)
W2(ν

′
k, π) +

M2M2h
4(p+ 1)

16µ
+

M5/2h3
√
p

6
.

In view of the inequality
√
a2 + b+ c ≤

√
a2 + c+ (b/2a), the last display leads to

W2(ν
′
k+1, π) ≤

{[
(1−mh+ 0.5M2h2)2W2(ν

′
k, π)

2 + 0.1M4h5p
}1/2

+
0.53M2Mh3p

1−mh+ 0.5M2h2
+ 0.88M2h

2(p + 1) +
(
µ+

M3h3

6

)
W2(ν

′
k, π)

+
M2M2h

4(p+ 1)

16µ
+

M5/2h3
√
p

6
.

For h ≤ 3m/(4M2) and µ = 0.25mh, we can use the inequality 1 −mh + 0.5M2h2 ≥ 17/32
and simplify the last display as follows:

W2(ν
′
k+1, π) ≤

{[
(1−mh+ 0.5M2h2)2W2(ν

′
k, π)

2 + 0.1M4h5p
}1/2

+
0.3975M2h

2(p+ 1)

1−mh+ 0.5M2h2
+ 0.88M2h

2(p + 1) +
(
µ+

M3h3

6

)
W2(ν

′
k, π)

+
3M2h

2(p+ 1)

16
+

M5/2h3
√
p

6

≤
{
(1−mh+ 0.5M2h2)2W2(ν

′
k, π)

2 + 0.1M4h5p
}1/2

+
(
0.25mh +

M3h3

6

)
W2(ν

′
k, π) + 1.82M2h

2(p+ 1) +
M5/2h3

√
p

6
.

We apply Lemma 9 to the sequence xk = W2(ν
′
k, π) with A = mh−0.5M2h2 andD = 0.25mh+

M3h3/6. For h ≤ 3m/(4M2) we have A−D = 0.75mh− 0.5M2h2 − (Mh)3/6 ≥ 0.25mh and
A+D ≤ 1.25mh − (3/8)M2h2 ≤ 0.727. This yields

W2(ν
′
k+1, π) ≤ (1− 0.25mh)kW2(ν

′
0, π) +

7.28M2h(p + 1)

m
+

2M5/2h2
√
p

3m
+

2
√
0.1M2h2

√
p√

1.273m

≤ (1− 0.25mh)kW2(ν
′
0, π) +

7.28M2h(p + 1)

m
+

1.23M5/2h2
√
p

m
.

This completes the proof of (17) and that of the theorem.

Proof of Proposition 1. Let us denoteMk =
∫ h
0 e−sHk ds

∫ 1
0 ∇2f(Dkh+x∆k) dx. From

(27), we have ∆k+1 = ∆k +Ak,h +Gk,h with

Ak,h =

∫ h

0
e−sHk ds

(
∇f(Dkh)−∇f(Lkh)

)
= −Mk∆k,

Gk,h =

∫ h

0
e−sHk

(
∇f(Lkh)−∇f(Ls) +Hk(Ls −Lkh)

)
ds.
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Using the fact that
∥∥∥∥
∫ 1

0
∇2f(Dkh + x∆k) dx−Hk

∥∥∥∥ ≤
∫ 1

0

∥∥∇2f(Dkh + x∆k)−Hk

∥∥ dx ≤ M2

2
‖∆k‖2,

we get ‖∆k +Ak,h‖2 = ‖(I−Mk)∆k‖2 ≤ M2

2m ‖∆k‖22 + e−mh‖∆k‖2. This further leads to the
recursive inequality

‖∆k+1‖2 ≤
M2

2m
‖∆k‖22 + e−mh‖∆k‖2 + ‖Gk,h‖2.

In view of the Minkowski inequality, this yields

(E[‖∆k+1‖q2])1/q ≤
M2

2m
E[‖∆k‖2q2 ]1/q + e−mh

E[‖∆k‖2q2 ]1/2q +E[‖Gk,h‖q2]1/q. (37)

We choose someK ∈ N and define the sequence {x0, . . . , xK} by setting x2K+1−k

k = E[‖∆k‖2
K+1−k

2 ].
Choosing in (37) q = 2K−k, we get

xk+1 ≤
M2

2m
x2k + e−mhxk +E[‖Gk,h‖2

K−k

2 ]2
k−K

, k = 0, 1, . . . ,K − 1.

We are in a position to apply Lemma 8 to the sequence {xk}k=0,...,K . This yields

xK ≤ 2m

M2

(
M2x0
2m

+
1

2
e−mh

)2K

exp

{
2K

M2 maxk E[‖Gk,h‖2
K

2 ]2
−K

+me−mh

m(M2x0

2m + 1
2e

−mh)2K

}
, (38)

where maxk is a short notation for maxk=0,1,...,K−1. It suffices now to upper bound the mo-
ments of ‖Gk,h‖2. We have

E[‖Gk,h‖q2]1/q ≤ M

∫ h

0
e−sm

(
E[‖Lkh+s −Lkh‖q2]

)1/q
ds

≤ M

∫ h

0
e−sm

{(
E[‖

∫ s

0
∇f(Lkh+u) du‖q2]

)1/q
+

√
2
(
E[‖Ws‖q2]

)1/q}
ds

≤ M

∫ h

0
e−sms ds

(
E[‖∇f(L0)‖q2]

)1/q
+M

√
2p+ q − 2

∫ s

0
e−sm√

s ds

≤ M

m2

(
E[‖∇f(L0)‖q2]

)1/q
+

M

2m3/2

√
(2p + q − 2)π.

On the other hand, by integration by parts, for every q ∈ 2N, we have

E[‖∇f(L0)‖q2] = −
∫

Rp

‖∇f(x)‖q−2
2 ∇f(x)⊤dπ(x)

=

p∑

ℓ=1

∫

Rp

∂ℓ

(
‖∇f(x)‖q−2

2 ∂ℓf(x)
)
π(x) dx

≤ M(p+ q − 2)E[‖∇f(L0)‖q−2
2 ].

This yields (E[‖∇f(L0)‖q2])1/q ≤
√

M(p+ 0.5q − 1). Combining all these estimates, we arrive
at

E[‖Gk,h‖q2]1/q ≤
1.6M3/2

√
2p + q − 2

m2
.
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Combining this inequality with (38) and replacing xK by (E[‖∆K‖22])1/2, we get

(E[‖∆K‖22])1/2 ≤ 2m

M2

(
M2x0
2m

+
1

2
e−mh

)2K

exp

{
2K

1.6M2M
3/2

√
2p + 2K−1 − 2 +m3e−mh

m3(M2x0

2m + 1
2e

−mh)2K

}
.

This completes the proof of the proposition.

7.6 Proofs of lemmas

Proofs of Lemma 2 and Lemma 3 can be found in (Dalalyan, 2017). Lemma 4 being an
improved version of Lemma 3 from (Dalalyan, 2017), its proof is presented below.

Proof of Lemma 4. Since the process L is stationary, V (a) has the same distribution
as V (0). For this reason, it suffices to prove the claim of the lemma for a = 0 only. Using the
Cauchy-Schwarz inequality and the Lipschitz continuity of f , we get

‖V (0)‖L2
=

∥∥∥
∫ h

0

(
∇f(Lt)−∇f(L0)

)
dt
∥∥∥
L2

≤
∫ h

0

∥∥∇f(Lt)−∇f(L0)
∥∥
L2

dt

≤ M

∫ h

0

∥∥Lt −L0

∥∥
L2

dt.

Combining this inequality with the definition of Lt, we arrive at

‖V (0)‖L2
≤ M

∫ h

0

∥∥−
∫ t

0
∇f(Ls) ds+

√
2Wt

∥∥
L2

dt

≤ M

∫ h

0

∥∥
∫ t

0
∇f(Ls) ds

∥∥
L2

dt+M

∫ h

0

∥∥√2Wt

∥∥
L2

dt

≤ M

∫ h

0

∫ t

0
‖∇f(Ls)‖L2

ds dt+M

∫ h

0

√
2pt dt.

In view of the stationarity of Lt, we have ‖∇f(Ls)‖L2
= ‖∇f(L0)‖L2

, which leads to

‖V (0)‖L2
≤ (1/2)Mh2

∥∥∇f(L0)
∥∥
L2

+ (2/3)M
√

2p h3/2.

To complete the proof, it suffices to apply Lemma 3.

Lemma 6. Let us denote

Ṽ =

∫ h

0

(
∇f(Lt)−∇f(L0)−∇2f(L0)(Lt −L0)

)
dt,

V̄ =

∫ h

0

{
∇f(Lt)−∇f(L0)−

√
2

∫ t

0
∇2f(Ls)dWs

}
dt,

with f satisfying Condition F and h ≤ 1/M , then

(E[‖Ṽ ‖22])1/2 ≤ 0.877M2h
2(p2 + 2p)1/2, (39)

‖V̄ ‖L2
≤ (1/2)(M3/2√p+M2p)h

2. (40)
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Proof. We first note that we have

‖Ṽ ‖2 ≤
∫ h

0
‖
∫ 1

0

(
∇2f(L0 + x(Lt −L0))−∇2f(L0)

)
dx(Lt −L0)‖2 dt

≤ 0.5M2

∫ h

0
‖Lt −L0‖22 dt.

In view of (21), this implies that (E[‖Ṽ ‖22])1/2 ≤ 0.5M2

∫ h
0 (E[‖Lt − L0‖42])1/2 dt. Using the

triangle inequality and integration by parts (precise details of the computations are omitted
in the interest of saving space), we arrive at

E[‖Lt −L0‖42] ≤ E[‖
∫ t

0
∇f(Ls)‖42] + 12

(
E[‖

∫ t

0
∇f(Ls)‖42]E[‖

√
2Wt‖42]

)1/2

+ 4E[‖Wt‖42]

≤ t4M2p(2 + p) + 12t3Mp(2 + p) + 4t2p(2 + p)

= p(2 + p)t2(t2M2 + 12tM + 4).

Integrating this inequality, we get

(E[‖Ṽ ‖22])1/2 ≤ 0.5M2(p
2 + 2p)1/2

∫ h

0
t(t2M2 + 12tM + 4)1/2 dt

≤ 0.5M2(p
2 + 2p)1/2

M2

∫ Mh

0
t(t2 + 12t+ 4)1/2 dt

≤ 0.5M2h
2(p2 + 2p)1/2 sup

x∈(0,2]

1

x2

∫ x

0
t(t2 + 12t+ 4)1/2 dt

=
0.5M2h

2(p2 + 2p)1/2

4

∫ 2

0
t(t2 + 12t+ 4)1/2 dt

≤ 1.16M2h
2(p2 + 2p)1/2.

This completes the proof of (39). To prove (40), we first assume that f is three times contin-
uously differentiable and apply the Ito formula:

∇f(Lt)−∇f(L0) =

∫ t

0
∇2f(Ls) dLs +

∫ t

0
∆[∇f(Ls)] ds.

Let us check that ‖∆[∇f(x)]‖2 = ‖∇[∆f(x)]‖2 ≤ M2p for every x ∈ R
p. Indeed, let us

introduce the fanction g : Rp → R defined by g(x) = ∆f(x) = tr[∇2f(x)]. The third item of
condition F implies that |g(x + tu) − g(x)| ≤ pM2|t| for every t ∈ R and every unit vector
u ∈ R

p. Therefore, letting t go to zero, we get |u⊤∇g(x)| ≤ pM2 for every unit vector u.
Choosing u proportional to ∇g(x), we get the inequality ‖∇g(x)‖2 = ‖∇[∆f(x)]‖2 ≤ pM2.
This leads to

‖V̄ ‖L2
≤

∫ h

0

∫ t

0

∥∥∇2f(Ls)∇f(Ls)−∆[∇f(Ls)]
∥∥
L2 ds dt

≤
∫ h

0

∫ t

0

(
M

∥∥∇f(Ls)
∥∥
L2 +M2p

)
ds dt

= (1/2)(M3/2√p+M2p)h
2.
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This completes the proof of the lemma in the case of three times continuously differentiable
functions f . If f is two-times differentiable with a second-order derivative satisfying the Lips-
chitz condition, then we can choose an arbitrarily small δ > 0 and apply the previous result to
the smoothed function fδ = f ∗ϕδ. Here, ϕδ denotes the density of the Gaussian distribution
Np(0, δ

2
Ip) and “∗” is the convolution operator. The formula ∇2fδ = (∇2f) ∗ϕδ implies that

fδ satisfies the required smoothness assumptions with the same constants M and M2 as the
function f . Thus, defining V̄ δ in the same way as V̄ with fδ instead of f , we get

‖V̄ δ‖L2
≤ (1/2)(M3/2√p+M2p)h

2.

On the other hand, setting gδ = f − fδ, we get

‖V̄ δ − V̄ ‖L2
≤

∫ h

0

∥∥∥∇gδ(Lt)−∇gδ(L0)−
√
2

∫ t

0
∇2gδ(Ls)dWs

∥∥∥
L2

dt

≤
∫ h

0

∥∥∇gδ(Lt)−∇gδ(L0)
∥∥
L2 dt+

√
2p

∫ h

0

(∫ t

0
E‖∇2gδ(Ls)‖2ds

)1/2

dt.

Using the Lipschitz continuity of ∇f and ∇2f , one easily checks that

‖∇gδ(x)‖2 ≤
∫

Rp

‖∇f(x− y)−∇f(x)‖2ϕδ(y) dy ≤ M

∫

Rp

‖y‖2ϕδ(y) dy ≤ Mδ
√
p,

‖∇2gδ(x)‖ ≤
∫

Rp

‖∇2f(x− y)−∇2f(x)‖ϕδ(y) dy ≤ M2

∫

Rp

‖y‖2ϕδ(y) dy ≤ M2δ
√
p.

This implies that the limit, when δ tends to zero, of ‖V̄ δ − V̄ ‖L2
is equal to zero. As a

consequence,

‖V̄ ‖L2
≤ lim

δ→0

(
‖V̄ δ‖L2

+ ‖V̄ δ − V̄ ‖L2

)

≤ (1/2)(M3/2√p+M2p)h
2 + lim

δ→0
‖V̄ δ − V̄ ‖L2

≤ (1/2)(M3/2√p+M2p)h
2.

This completes the proof of the lemma.

Lemma 7. Let A, B and C be given non-negative numbers such that A ∈ (0, 1). Assume
that the sequence of non-negative numbers {xk}k∈N satisfies the recursive inequality

x2k+1 ≤ [(1−A)xk + C]2 +B2

for every integer k ≥ 0. Let us denote

E =
(1−A)C +

{
C2 + (2A−A2)B2

}1/2

2A−A2
≥ (1−A)C

A(2−A)
+

B√
A(2−A)

D =
{
[(1−A)E + C]2 +B2

}1/2 − (1−A)E ≤ C +
B2A

C +
√

A(2−A)B

Then

xk ≤ (1−A)kx0 +
D

A
≤ (1−A)kx0 +

C

A
+

B2

C +
√

A(2 −A)B
(41)

for all integers k ≥ 0.
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Proof. We will repeatedly use the fact that D = EA. Let us introduce the sequence yk
defined as follows: y0 = x0 + E and

yk+1 = (1−A)yk +D, k = 0, 1, 2, . . .

We will first show that yk ≥ xk ∨ E for every k ≥ 0. This can be done by mathematical
induction. For k = 0, this claim directly follows from the definition of y0. Assume that for
some k, we have xk ≤ yk and yk ≥ E. Then, for k + 1, we have

xk+1 ≤
(
[(1−A)xk + C]2 +B2

)1/2

≤
(
[(1−A)yk + C]2 +B2

)1/2

= (1−A)yk +
(
[(1 −A)yk +C]2 +B2

)1/2 − (1−A)yk

≤ (1−A)yk +
(
[(1 −A)E + C]2 +B2

)1/2 − (1−A)E = yk+1

and, since D = EA, yk+1 = (1−A)yk+D ≥ (1−A)E+EA = E. Thus, we have checked that
the sequence xk is dominated by the sequence yk. It remains to establish an upper bound on
yk. This is an easy task since yk satisfies a first-order linear recurrence relation. We get

yk = (1−A)k−1y1 +

k−2∑

j=0

(1−A)jD

= (1−A)k−1
(
x1 +

D

A

)
+

D

A

(
1− (1−A)k−1

)

= (1−A)k−1x1 +
D

A
.

This completes the proof of (41).

Proof of Lemma 5. We introduce the process vt = − exp
{ ∫ t

0 Hu du
} ∫ t

0 Hsxs ds. The
time derivative of this process satisfies

v′
t = − exp

{∫ t

0
Hu du

}
Htαt.

This implies that vt = −
∫ t
0 exp

{ ∫ s
0 Hu du

}
Hsαs ds. Using the definition of vt, we can check

that
∫ t
0 Hsxs ds = − exp

{
−

∫ t
0 Hu du

}
vt =

∫ t
0 exp

{
−

∫ t
s Hu du

}
Hsαs ds. Substituting this

in (25), we get

xt = αt −
∫ t

0
exp

{
−

∫ t

s
Hu du

}
Hsαs ds. (42)

On the other hand—using the notation Mt = exp
{ ∫ t

0 Hu du
}
and the integration by parts

formula for semi-martingales—the second integral on the right hand side of (26) can be
modified as follows:∫ t

0
exp

{
−

∫ t

s
Hu du

}
dαs = M

−1
t

∫ t

0
Msdαs

= M
−1
t

(
Mtαt −M0α0 −

∫ t

0
dMsαs

)

= αt − exp
{
−
∫ t

0
Hu du

}
α0 −

∫ t

0
exp

{
−

∫ t

s
Hu du

}
Hsαs ds.

Combining this equation with (42), we get the claim of the lemma.
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Lemma 8. Let A and B be given positive numbers and {Ck}k∈N be a given sequence of
real numbers. Assume that the sequence {xk}k∈N satisfies the recursive inequality

xk+1 ≤ Ax2k + 2Bxk + Ck, ∀k ∈ N.

Then, for all k ∈ N,

xk ≤ 1

A

(
Ax0 +B

)2k
exp

{ k−1∑

j=0

2k−1−j ACj +B(1−B)

(Ax0 +B)2j+1

}
.

Proof. Let us introduce the sequences {yk}k∈N and {zk}k∈N defined by the relations
y0 = x0,

yk+1 = Ay2k + 2Byk + Ck,

zk = (Ax0 +B)2
k
exp

{ k−1∑

j=0

2k−1−j ACj +B(1−B)

(Ax0 +B)2
j+1

}
.

Using mathematical induction, one easily shows that inequalities

xk ≤ yk and (Ax0 +B)2
k ≤ Ayk +B ≤ zk

hold for every k ∈ N. As a consequence, we get

xk ≤ Axk +B

A
≤ Ayk +B

A
≤ zk

A
.

This completes the proof of the lemma.

Lemma 9. Let A,B,C,D be positive numbers satisfying D < A < 1 and {xk}k∈N be a
sequence of positive numbers satisfying the inequality

xk+1 ≤
(
(1−A)2x2k +B2

)1/2
+ C +Dxk.

Then, for every k ≥ 0, we have

xk ≤ (1−A+D)kx0 +
C

A−D
+

B√
(A−D)(2−A−D)

.

Proof. We start by setting

E =
B√

(A−D)(2−A−D)
, F = C + (A−D)E

and by defining a new sequence {yk}k∈N by y0 = x0 + E and

yk+1 = (1−A+D)yk + F.
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Our goal is to prove that yk ≥ xk ∨ E for every k. This claim is clearly true for k = 0. Let
us assume that it is true for the value k and prove its validity for k + 1. Since the function
x 7→

√
x2 + a2 − x is decreasing, we have

xk+1 ≤
√

(1−A)2y2k +B2 + C +Dyk

≤ (1−A+D)yk + C +
√

(1−A)2y2k +B2 − (1−A)yk

≤ (1−A+D)yk + C +
√

(1−A)2E2 +B2 − (1−A)E = yk+1.

On the other hand,

yk+1 ≥ (1−A+D)yk + (A−D)E

≥ (1−A+D)E + (A−D)E = E.

This implies, in particular, that xk ≤ yk for every k ∈ N. Since {yk} satisfies a first-order
linear recursion, we get yk = (1−A+D)ky0 + F (1− (1−A+D)k)/(A−D).
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