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Abstract



This theoretical note presents a case study demonstrating the importance
of Bayesian hierarchical mixture models as a modelling tool for evaluating
the predictions of competing theories of cognitive processes. This note also
contributes to improving current practices in data analysis in the psycho-
logical sciences. As a case study, we revisit two published data sets from
psycholinguistics. In sentence comprehension, it is widely assumed that the
distance between linguistic co-dependents affects the latency of dependency
resolution: the longer the distance, the longer the time taken to complete
the dependency (e.g., Gibson 2000). An alternative theory, direct access
(McElree, 2000), assumes that retrieval times are a mixture of two distribu-
tions (Nicenboim & Vasishth, 2017): one distribution represents successful
retrievals and the other represents an initial failure to retrieve the correct
dependent, followed by a reanalysis (McElree, 1993) that leads to successful
retrieval. Here, dependency distance has the effect that in long-distance
conditions the proportion of reanalyses is higher (due to similarity-based
interference). We implement both theories as Bayesian hierarchical models
and show that the direct-access model fits the Chinese relative clause reading
time data better than the dependency-distance account. This work makes
several novel contributions. First, we demonstrate how the researcher can
reason about the underlying generative process of their data, thereby express-
ing the underlying cognitive process as a statistical model. Second, we show
how models that have been developed in an exploratory manner to represent
different underlying generative processes can be compared in terms of their
predictive performance, using both K-fold cross validation on existing data,
and using completely new data. Finally, we show how the models can be
evaluated using simulated data; this is a method that is standardly used
in Bayesian statistics, but remains unutilized in data analysis within the
psychological sciences.

Keywords: Bayesian Hierarchical Finite Mixture Models; Psycholinguistics;
Sentence Comprehension; Chinese Relative Clauses; Direct-Access Model;
K-fold Cross-Validation

Introduction

Bayesian cognitive modelling (e.g., Lee & Wagenmakers, 2014) has long played an
important role in cognitive science. We present a case study from psycholinguistics showing
how hierarchical mixture models can be profitably used to statistically model alternative
underlying generative processes that produce the observed data. The case study relates
to data from two self-paced reading studies investigating Chinese relative clauses. The
hierarchical mixture modelling approach we present will be of general interest to researchers
in psychology and related areas.

Please send correspondence to vasishth@uni-potsdam.de.
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The processing difficulty associated with Chinese subject vs. object relative clauses has
been an important topic of investigation (see Vasishth, Chen, Li, & Guo, 2013, for a review
and meta-analysis). Chinese is interesting here because it speaks to an important process
that is triggered when we read or hear a sentence. In order to understand the meaning of a
sentence, we have to at least figure out who did what to whom. For example, consider a
sentence such as (1):

(1) a. The man (on the bench) was sleeping.

To interpret the sentence, the noun The man must be recognized to be the subject of
the verb phrase was sleeping; this dependency is represented here as a directed arrow.
One well-known proposal (Just & Carpenter, 1992) is that dependency distance between
linguistically related elements partly determines comprehension difficulty as measured by
reading times or question-response accuracy. The Just and Carpenter proposal also appears
in two current theories, the Dependency Locality Theory (DLT) (Gibson, 2000) and the
activation-based account (Lewis & Vasishth, 2005). Both these theories assume that the
longer the distance between two co-dependents such as a subject and a verb, the greater
the retrieval difficulty at the moment of dependency completion. In the DLT, the reason
for the greater difficulty is decay of the dependent in memory, whereas for the activation
account, the explanation is that the activation of the dependent is attenuated due to decay
as well as interference from other word(s) intervening between the dependents. As shown in
(1), the distance between co-dependents increases if a phrase (here, a prepositional phrase)
intervenes, leading to greater decay of the mental representation of the noun phrase the
man by the time it is accessed at the verb, and possibly also greater interference from the
intervening noun bench.

Consider now the self-paced reading study concerning Chinese subject and object
relative clauses reported by Gibson and Wu (2013). As shown in (2), in Chinese, the relative
clause precedes the head noun (unlike English, where the relative clause follows the head
noun); as a consequence, when the head noun is read, a dependency must be completed
between the noun and the corresponding gap in the relative clause.1

(2) a. Subject relative
[GAPi

GAP

yaoqing

invite

fuhao

tycoon

de]

DE

guanyuani

official

xinhuaibugui

have bad intentions

‘The official who invited the tycoon has bad intentions.’
b. Object relative

[fuhao

tycoon

yaoqing

invite

GAPi

GAP

de]

DE

guanyuani

official

xinhuaibugui

have bad intentions

‘The official who the tycoon invited has bad intentions.’

Interestingly, this dependency distance is larger in subject relatives compared to object
relatives, which leads to the surprising prediction that the head noun in subject relatives

1The dependency could be equally well be between the relative clause verb and the head noun; nothing
hinges on assuming a gap-head noun dependency.
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should be harder to process than in object relatives. This prediction is surprising because,
in almost all languages that have been investigated, object relatives are more difficult to
process than subject relatives (Hsiao & Gibson, 2003).

Thus, the Dependency Locality Theory and the activation account both predict an
object relative advantage for Chinese. For simplicity, we operationalize distance here as
the number of words intervening between the gap inside the relative clause and the head
noun. In the DLT, distance is operationalized as the number of (new) discourse referents
intervening between two co-dependents; and in the activation model, the key constructs are
not distance per se but decay and interference in working memory. In this paper, nothing
hinges on these underlying theoretical details.

In the Gibson and Wu study, reading times were recorded using self-paced reading
in the two conditions, with 37 subjects and 15 items, presented in a standard Latin square
design. The experiment originally had 16 items, but one item was removed in the published
analysis due to a mistake in the item.

The predicted slowdown due to increased dependency distance can be evaluated by
fitting the hierarchical linear model shown in (1). Assume that (i) i indexes participants,
i = 1, . . . , I and j indexes items, j = 1, . . . , J ; (ii) yij is the reading time in milliseconds for
the i-th participant reading the j-th item; and (iii) the predictor x is sum-coded: subject
relatives are coded as −1/2, and object relatives as +1/2; this coding implies that an overall
object relative advantage would show a negative coefficient. In other words, with this coding,
an object relative advantage corresponds to a negative sign on the estimate. Then, the data
yij (reading times in milliseconds) are defined to be generated by the following model:

yij = β1 + β2xij + ui + wj + εij (1)

In this model, there are three mutually independent sources of variance:

1. The variance associated with residual error: εij ∼ Normal(0, σ2
e)

2. The variance associated with by-participant adjustments to the intercept: ui ∼
Normal(0, σ2

u)

3. The variance associated with by-item adjustments to the intercept: wj ∼
Normal(0, σ2

w)

The terms ui and wj are called varying intercepts for participants and items respectively;
they represent by-participant and by-item adjustments to the fixed-effect intercept β0. Their
variances, σ2

u and σ2
w, represent between-participant (respectively item) variance.2

The above model is effectively a statement about the generative process that produced
the data. If increasing distance leads to longer reading times, we would expect to find
evidence that the estimate of the slope β2 is negative; specifically, reading times for object
relatives are expected to be shorter than those for subject relatives. As shown in Table 1,

2This so-called crossed participants and items varying intercepts hierarchical linear model can be made
more complex by adding varying slopes for the predictor x by participant and by item, but for ease of
exposition we do not consider these more complex models in the present paper. See Sorensen, Hohenstein,
and Vasishth (2016) for a tutorial on how models with full variance-covariance matrices for random effects
can be fit in Stan.
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this prediction appears, at first sight, to be borne out. Object relatives are estimated to be
read 120 ms faster than subject relatives. This effect is statistically significant because the
absolute t-value associated with the effect of RC Type is greater than 2.3

Estimate Std. Error t value
Intercept 548.43 51.56 10.64*

RC TypeOR:+0.5 -120.39 48.01 -2.51*
Table 1
A hierarchical linear model using raw reading times in milliseconds as dependent variable,
corresponding to the reported results in Gibson and Wu 2013. Statistical significance is shown
by an asterisk.

To summarize, the conclusion from the above result would be that in Chinese, subject
relatives are harder to process than object relatives because the gap inside the relative clause
is more distant from the head noun in subject vs. object relatives. The larger distance
makes it more difficult to complete the gap-head noun dependency in subject relatives. This
explanation of processing difficulty is plausible given the considerable independent evidence
from languages such as English, German, Hindi, Persian and Russian that dependency
distance can affect reading time (see the review in Safavi, Husain, & Vasishth, 2016).

However, the distributions of the reading times in the subject vs. object relatives show
an interesting and potentially important asymmetry that is not modelled by the standard
hierarchical linear model. At the head noun, the reading times in subject relatives are more
spread out than in object relatives. This is shown in Figure 1, where reading times are
shown in the raw as well as log scale. The heterogeneity in variance seen in raw reading
times is ignored by the hierarchical linear model shown above.

Because even a single extreme value can influence the mean, and because extreme
values are widely assumed to be non-representative of the underlying generative process, a
standard approach is to delete “outliers” based on some criterion. For example, one can
delete all data lying beyond ±2SD in each condition; the cut-off tends to vary between 2
and 3.5 SDs. In the published paper, Gibson and Wu (2013) did not delete any data, leading
to the results shown in Table 1.

This deletion procedure has at least three problems: First, the cut-off criterion assumes
that the underlying data have a symmetric, normal distribution. Data points that lie beyond
a certain percentile on either side of the distribution would have a low probability of
occurrence given a normal distribution with some mean and standard deviation. Such
an assumption might be valid in some cases, but it is usually invalid for reading times,
which cannot be lower than 0 ms and can only increase in one direction.4 Second, this
deletion approach assumes that the data points identified as extreme are irrelevant to the
question being investigated or are recording errors. There are certainly situations where this
assumption is justified. But, in situations where all data are in principle considered to be
legitimate, it may be very informative to directly model the generative process that produces

3The object relative advantage shown in Table 1 was originally carried out by Gibson and Wu (2013) as a
repeated measures ANOVA but the conclusion was the same as presented here.

4Technically, the lower bound must be greater that 0, and so ideally one should fit a shifted LogNormal
distribution; see Rouder (2005) for discussion, and Nicenboim, Engelmann, Suckow, and Vasishth (2017) for
an example of how such models can be implemented using Stan (Stan Development Team, 2013).
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Figure 1 . Boxplots showing the distribution of reading times (in raw and log ms scale) by
condition of the Gibson and Wu (2013) data.

these extreme values. Draper and Smith (1998, 76) make this point as well: “. . . outliers
should be rejected out of hand only if they can be traced to causes such as errors in recording
the observations or in setting up the apparatus. Otherwise careful investigation is in order.”
Third, this criterion of deleting extreme data introduces a degree of flexibility in data analysis.
Simmons, Nelson, and Simonsohn (2011) report the results of their survey of the standard
practice in psychology as follows: “. . . researchers excluded some responses for being too
fast, but what constituted “too fast” varied enormously: the fastest 2.5%, or faster than 2
standard deviations from the mean, or faster than 100 or 150 or 200 or 300 ms. Similarly,
what constituted “too slow” varied enormously: the slowest 2.5% or 10%, or 2 or 2.5 or
3 standard deviations slower than the mean, or 1.5 standard deviations slower from that
condition’s mean, or slower than 1,000 or 1,200 or 1,500 or 2,000 or 3,000 or 5,000 ms.” For
example, in the present case, if we decide to retain the extreme values seen in one condition,
the mean for that condition would increase, leading to a statistically significant difference, as
in Table 1 and in the original analysis by Gibson and Wu (2013). Removing only the three
most extreme values (out of 547) that are greater than 4500 ms leads to an evaporation
of the statistically significant effect; see Table 2. Thus, the decision to remove data can
radically alter the conclusion; depending on whether the researcher hopes to argue for a null
result or a significant difference, both outcomes can be accommodated given the data.

An alternative approach is to not delete extreme data but to downweight the extreme



FINITE MIXTURE MODELS OF READING TIMES 6

Estimate Std. Error t value
Intercept 523 45 12

RC TypeOR:+0.5 -70 39 -1.8
Table 2
A hierarchical linear model of the Gibson and Wu data using raw reading times in milliseconds
as dependent variable, with 3 out of 547 extreme data point (reading times greater than 4.5
seconds) removed.

values by applying a variance stabilizing transform (Box & Cox, 1964). Taking a log-
transform of the reading time data, or a reciprocal transform (as recommended in some
situations by Ratcliff, 1993), can reduce or eliminate the heterogeneity in variance; see
Vasishth et al. (2013) for further discussion of this point for the specific case of Chinese
relatives.

Log-transforming reading time data makes the assumption that the data were generated
by LogNormal distributions with different means but identical standard deviations in the
two conditions. Table 3 shows that if we assume such a generative model, and without
deleting any data, there is no longer a statistically significant object relative advantage: the
absolute t-value for the estimate of the effect of RC Type is now smaller than the critical
value of 2. Thus, assuming that the present data are generated by LogNormal distributions
with different means for subject and object relatives, and using statistical significance as
a decision criterion, leads to the conclusion that there isn’t any evidence against the null
hypothesis of no effect of distance.

Note, however, that even in the log-transformed data, the heteroscedasticity in the
two conditions is not being modelled (see Figure 1); the model simply assumes identical
variances in both conditions.

Estimate Std. Error t value
Intercept 6.06 0.07 92.64*

RC TypeOR:+0.5 -0.07 0.04 -1.61
Table 3
A hierarchical linear model using log reading times in milliseconds as dependent variable in
the Gibson and Wu (2013) data.

The heteroscedasticity observed in the two conditions may have an alternative expla-
nation in terms of the direct-access model of McElree (2000). Briefly, this theory asserts—in
direct contrast to DLT and the activation model—that dependency completion takes con-
stant time regardless of distance. However, when dependency distance increases, there is an
increase in the proportion of trials where reanalysis occurs (McElree, 1993). Reanalysis here
means that an attempt is made to retrieve the correct dependent but this attempt does not
succeed; a process is then triggered that leads to a second attempt to complete the retrieval,
and this results in a successful retrieval. This reanalysis process takes more time to complete
than the case where retrieval succeeds immediately.

Under the direct-access model, in the Chinese relative clause example (2), retrieval at
the head noun in subject relatives leads to more reanalyses due to the fact that a noun (the
object of the relative clause) intervenes between the gap and the head noun; this intervening



FINITE MIXTURE MODELS OF READING TIMES 7

noun causes interference. By contrast, in object relatives, no noun intervenes between the
gap and the head noun; rather, the subject of the relative clause precedes the gap.5

Nicenboim and Vasishth (2017) noticed that the direct-access model can be seen as
assuming a mixture distribution where successful retrieval can be modelled as a LogNormal
distribution: y ∼ LogNormal(µ, σ2

e). Reanalysis can be modelled as another LogNormal
distribution with a different location parameter and, possibly, also a different scale parameter:
y ∼ LogNormal(µ + δ, σ2

e′), where , σ2
e′ could either be identical to, or different from, σ2

e ,
and δ > 0. Following Nicenboim and Vasishth (2017), we can directly express the McElree
model as a hierarchical mixture model and compare it to the hierarchical linear model that
represents the proposal by Gibson and others. In this paper, we show that a hierarchical
finite mixture model furnishes a better fit to the present data (in terms of predictive accuracy)
than the simpler hierarchical linear model.

The finite mixture modelling approach we present here will be of broad interest because
heteroscedastic distributions are ubiquitous in reading-time data (see, for example, the 10
data-sets discussed in Vasishth, Jäger, & Nicenboim, 2017), and such heteroscedasticity can
be modelled directly. Our goal here is to demonstrate how the researcher can use a flexible
set of statistical tools for reasoning about cognitive processes.

The structure of the paper is as follows. We begin by discussing the finite mixture
model realization of the direct-access model as developed by Nicenboim and Vasishth (2017).
Then, we implement a range of plausible models that could have generated the data. Next,
we fit the different models to the Gibson and Wu data, and compare the relative predictive
accuracy of the models using K-fold cross-validation. Posterior predictive checks are used to
graphically evaluate whether the model selected using K-fold cross-validation realistically
reflects the underlying generative process. We validate the conclusions we reached by
analyzing new data that was an attempted replication of Gibson and Wu’s study. Finally,
the model chosen as the best one for both data-sets is validated using simulated data.

Reading times as a mixture distribution

A finite mixture model assumes that the outcome (here, reading time in milliseconds,
yi, i = 1, . . . , N) is drawn from one of several distributions; here, we consider the case of a two-
mixture distribution as an implementation of the direct-access model. For example, consider
the situation where 75% of the data come from a LogNormal distribution with mean 5.8 and
standard deviation 0.2, and 25% of the remaining data come from a LogNormal(6.8,0.7).
Figure 2 shows simulated data from such a mixture distribution. This mixture distribution
has a single mode but has the characteristic skew that is also present in the Chinese data.

As mentioned above, we can implement the direct-access model as a hierarchical
mixture model with retrieval time in milliseconds assumed to be generated from one of
two distributions, where the proportion of trials in which a reanalysis occurs (the mixing
proportion) is psr in subject relatives, and por in object relatives. The expectation here is
the extreme values that are seen in subject relatives are due to psr being larger than por.
One way to write the mixture distribution is with respect to the probability density function

5The fact that intervention causes interference can be seen as an instance of the observation by Van Dyke
and McElree (2006) that retroactive interference has stronger effects than proactive interference in sentence
processing.
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Figure 2 . An illustration of the distribution of simulated data (1000 data points) consisting
of a distribution of two LogNormals: 75% of the data come from LogNormal(5.8,0.2) and
25% come from LogNormal(6.8,0.7). The mixture data (shown in the right-most plot) have
a characteristic skew in the right tail.
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of the observed reading times y. Note that both the mixture distributions shown in (2,3)
are identical; all that differs is that the proportion of reanalyses in subject relatives (psr) is
expected to be higher than in object relatives (por).

Subject relatives:

yij ∼
{
LogNormal(β + ui + wj , σ

2
e), if retrieval succeeds

LogNormal(β + δ + ui + wj , σ
2
e′), if reanalysis occurs, prob. psr

(2)

Object relatives:

yij ∼
{
LogNormal(β + ui + wj , σ

2
e), if retrieval succeeds

LogNormal(β + δ + ui + wj , σ
2
e′), if reanalysis occurs , prob. por

(3)

Here, the terms ui and wj are the varying intercepts by participant and by item, as in
equation (1).

In order to understand whether the Chinese relative clause data are better described
as being generated by a mixture process, we implemented a series of increasingly complex
models. All models were hierarchical, with varying intercepts for participants and for items.
In order to compare the models, we used K-fold cross-validation, described next.

Model comparison

Bayesian model comparison can be carried out using different methods (see Vehtari,
Ojanen, et al., 2012, for an extended discussion). Here, we use K-fold cross-validation
(Vehtari, Gelman, & Gabry, 2017) because it is a well-known method for model evaluation,
and because it is computationally tractable.

This method splits the data into K subsets, taking care that the data remain balanced
such that each participants contributes an approximately comparable amount of data from
each condition that they saw. The number of subsets is typically 10. Then, the model
is fit to the data after holding out 1/K-th of the data and the posterior distributions of
the parameters recorded. These parameter estimates are then used to compute predictive
accuracy on the held-out data.

The difference between the predicted and observed held-out value is used to quantify
model quality. The sum of the expected log pointwise predictive density, êlpd, can be used
as a measure of predictive accuracy. For model comparison, the difference between the êlpd’s
of competing models can be computed, including the standard deviation of the sampling
distribution of the difference in êlpd. When we compare the model described in equation (1)
with the mixture model described in equation (2, 3), if the latter has a higher êlpd, then it
has a better predictive performance compared to (1).

The quantity êlpd is a Bayesian alternative to the Akaike Information Criterion
(Akaike, 1974). Note that it is not necessarily the case that the more complex the model, the
better the predictive performance: as shown later, a complex model may well have as good
or poorer performance than a simpler model (Gelman, Hwang, & Vehtari, 2014; Vehtari
et al., 2012). An alternative to using êlpd is to examine −2× êlpd, which is equivalent to
deviance, and is called the LOO Information Criterion.
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Once we repeatedly carry out this procedure K times, with different held-out data
each time, we can compute êlpd. Further details of the K-fold algorithm are provided in
Appendix A, and the code is provided in Appendix B.

Definitions of the hierarchical mixture models

In all the models described below, the dependent variable is reading time in milliseconds,
and the reading times are assumed to be generated from a LogNormal.

In Bayesian modelling, the goal is to derive the posterior distribution of the parameters
given the data using Bayes’ rule, which states that the posterior distribution of the parameters
is proportional to the product of the prior distribution of the parameters multiplied by the
likelihood (see Kruschke, 2014, for an accessible introduction for psychologists). Parameters
are thus not unknown point values but are random variables with prior distributions (usually
mildly informative priors). We defined priors for the model parameters as follows. All
standard deviations are constrained to be greater than 0 and have priors Cauchy(0, 2.5);
probabilities have priors Beta(1, 1); and all other coefficients have priors Cauchy(0, 2.5).

Common to all the models fitted here is the assumption that participants and items
have varying intercepts: ui ∼ Normal(0, σ2

u), wj ∼ Normal(0, σ2
w).

In the mixture models, we will call the distribution that corresponds to the successful
retrieval the success distribution, and the one corresponding to the reanalysis the reanalysis
distribution. We fit four models, described below. These models have incrementally increasing
complexity.

• M0: A standard hierarchical linear model (no mixture). This corresponds to a test of
Gibson’s DLT and Lewis and Vasishth’s activation account.

• M1: This model assumes a mixture distribution in both subject and object relatives.
The model also assumes that there is no difference in retrieval time in ORs vs SRs,
but only in the probability of successful retrieval. The variances of the success and
reanalysis distributions are assumed to be identical (homogeneous variances).

• M2: This model assumes a mixture in both relative clause types just like M1. It differs
from M1 in that the variances of the success and reanalysis distributions are assumed
to be different (heterogeneous variances).

• M3: This model assumes that retrieval time in SRs and ORs is different, and that the
variances of the two distributions are different (heterogeneous variance). Thus, M3
is like M2, but with the additional assumption that distance may affect dependency
completion time, as proposed by Gibson and others. This model is therefore a hybrid
of the two proposals.

Thus, the models directly link to the theoretical proposals. M0 corresponds to the
DLT and activation account; M1 is the implementation of the direct-access model proposed
by Nicenboim and Vasishth (2017); M2 is an extension of the Nicenboim proposal; and
M3 extends M2 by incorporating the assumption that, in addition to reanalyses, mean
dependency completion times might be different in subject vs. object relatives.
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The data

The evaluation of these models was carried out using two separate data-sets. The first
was the original study from Gibson and Wu (2013) that was discussed in the introduction.
The second study was a replication attempt of the Gibson and Wu study that was published
in Vasishth et al. (2013). This second study will serve the purpose of validating whether
independent evidence can be found for the mixture model selected using the original Gibson
and Wu data-set.

Results

We first present results for the Gibson and Wu data, and then for the replication data
reported in Vasishth et al. (2013). In the models reported below, the dependent variable is
always reading time in milliseconds.

The original Gibson and Wu study. As shown in Tables 4 and 5, a comparison
of the models M0-M3 using K-fold cross-validation shows that model M2 has a better
predictive performance than M0 and M1, but M2 and M3 have similar êlpd. Among
the models considered, the best model—the one with the highest êlpd—is therefore the
heterogeneous variance mixture model M2. As mentioned above, this is an extension of the
Nicenboim and Vasishth (2017) model, where the variances of the success and reanalysis
distributions are different. Although model M3—which incorporates the assumptions of
both the DLT/activation model and the direct-access model—is as good as M2, due to the
fact that it has a greater complexity, we settle on M2. Note that our choice of M2 is only on
grounds of parsimony; the model comparison does not imply that M3 is worse than M2.

models êlpd se
1 M0 -3759.56 37.80
2 M1 -3641.56 37.39
3 M2 -3611.96 35.12
4 M3 -3614.01 34.74

Table 4
Estimated elpd values and their standard errors for the four models investigated for the
Gibson and Wu 2013 data.

models ∆êlpd se
1 M1 vs M0 118.00 13.82
2 M2 vs M1 29.61 9.28
3 M3 vs M2 -2.05 2.52

Table 5
Model comparison using K-fold cross-validation for the Gibson and Wu 2013 data. Shown
are the differences in êlpd, along with standard errors of the differences. In a comparison
between model B vs. A, a positive êlpd favours model B.

The estimates from the mixture model (equations 2,3, model M2) are shown in Table 6.
Note that in Bayesian modelling, we are not interested in “statistical significance”; the
primary goal is the estimation of parameters, understanding the generative process, and
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mean lower upper
β̂0 5.85 5.76 5.95
δ̂ 0.93 0.73 1.14

p̂sr 0.25 0.17 0.34
p̂or 0.21 0.14 0.29

p̂sr − p̂or 0.04 -0.04 0.13
σ̂e′ 0.64 0.54 0.74
σ̂e 0.22 0.20 0.25
σ̂u 0.24 0.18 0.31
σ̂w 0.09 0.05 0.16

Table 6
Posterior parameter estimates from the hierarchical mixture model (equations 2,3) corre-
sponding to the direct-access model. The data are from Gibson and Wu, 2013. Shown are
the mean and 95% credible intervals for each parameter.

comparing the predictive performance of competing models. All parameter estimates are
written with a hat (̂·). Table 6 shows that the mean difference between the probability psr

and por is 4% (95% credible interval −4, 13%); the posterior probability of this difference
being greater than zero is 82%.

Model evaluation using posterior predictive checks. Posterior predictive
checks (Gelman, Carlin, et al., 2014) are a useful and informative way to establish whether
a model generates simulated data that is consistent with the observed data. One approach,
advocated by Gelman and colleagues, is to compute a relevant statistic derived from the
observed data, and then to graphically compare the posterior distribution of that statistic
using data predicted by the model. This graphical check allows us to determine the extent
to which the generative process implied by the model is realistic. Since models are approxi-
mations, the posterior predictive distributions will rarely match the observed data perfectly.
Even if the generative process matches the observed data, this does not entail that the model
is the correct one. However, posterior predictive checks are useful for determining whether
essential or particularly interesting aspects of the data are captured. In our case, we want to
characterize the generation of relatively rare but very slow reading times in subject relatives.
For this reason, we chose as a statistic the 90th percentile of the reading time observed in
subject and object relatives. This statistic was chosen because it is one way to characterize
the distribution of slower values.

The distributions of the 90th percentiles of the posterior predictive reading times
for each relative clause type should, in the ideal case, include the observed percentile as
a plausible value. We computed the distribution of the percentiles in 4000 instances of
predicted data from the four models considered. Figure 3 shows that, compared to model M0,
all the others models are better able to predict the observed 90th percentile of reading times
in subject relatives: the observed percentile value falls within the distribution of posterior
predicted percentiles. The observed percentile for object relatives is captured by all models.

The replication of the Gibson and Wu study. This data-set, originally reported
by Vasishth et al. (2013), had 40 new participants but the same 15 items as in the Gibson
and Wu data. Figure 4 shows the distribution of the data by condition; there seems to
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Figure 3 . The distributions of 90th percentile reading times from the posterior predicted
data for subject and object relatives, generated from models M0-M3 (4000 simulations). The
vertical lines show the observed 90th percentile of the reading times in the Gibson and Wu
2013 data.
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a similar skew as in the original study, although the spread is not as dramatic as in the
original study.
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Figure 4 . Boxplots showing the distribution of reading times by condition of the replication
of the Gibson and Wu data.

As shown in Tables 7 and 8, the mixture model M2 shows the best performance and,
as in the original data-set, model M3 does no better than M2. Table 9 shows the estimates
of the posterior distributions from the mixture model M2. In the mixture model, the mean
difference between the probability psr and por is 7% (95% credible interval −1, 15%); the
posterior probability of this difference being greater than zero is 96%.

models êlpd se
1 M0 -3957.13 52.00
2 M1 -3856.58 45.87
3 M2 -3797.56 37.65
4 M3 -3799.88 37.10

Table 7
Estimated elpd values for the four models investigated for the replication of the Gibson and
Wu study.

Model evaluation using posterior predictive checks. We carried out posterior
predictive checks here as well. As with the original data, we computed the distribution
of the maximum values observed in 4000 instances of predicted reading times for the two
relative clause types. As shown in Figure 5, model M2 characterizes the observed percentiles
in the two relative clause types better than the other models considered.
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Figure 5 . The distributions of 90th percentile of reading times from the posterior predicted
data for subject and object relatives, generated from models M0-M3 (4000 simulations).
The vertical lines show the observed 90th percentile reading times in the replication of the
Gibson and Wu 2013 data.
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models ∆êlpd se
1 M1 vs M0 100.55 17.03
2 M2 vs M1 59.02 18.10
3 M3 vs M2 -2.32 3.48

Table 8
Model comparison using K-fold cross-validation for the replication of the Gibson and Wu
study.

mean lower upper
β̂0 5.86 5.78 5.95
δ̂ 0.75 0.56 0.97

p̂sr 0.23 0.15 0.33
p̂or 0.16 0.09 0.25

p̂sr − p̂or 0.07 -0.01 0.15
σ̂e′ 0.69 0.59 0.81
σ̂e 0.21 0.18 0.23
σ̂u 0.22 0.17 0.29
σ̂w 0.07 0.04 0.12

Table 9
Posterior parameter estimates from the hierarchical mixture model M2 corresponding to the
direct-access model. The data are from the replication of Gibson and Wu, 2013 reported in
Vasishth et al., 2013. Shown are the mean and 95% credible intervals for each parameter.

Discussion

The model comparison and parameter estimates presented above suggest that, at
least as far as these Chinese relative clause data are concerned, the direct-access model
may explain the data better than the DLT or the activation account. The Gibson and Wu
(2013) data and the replication data suggest that a higher proportion of reanalyses occurred
in subject relatives compared to object relatives. In other words, increased dependency
distance may have the effect that it increases the proportion of reanalyses. It is important
to note that this conclusion should be seen as tentative until confirmed or falsified by new
data, preferably from a large sample.

There is one potential objection to the conclusion above. It would be important to
obtain independent evidence as to which dependency was eventually created in each trial.
This could be achieved by asking participants multiple-choice questions to find out which
dependency they built in each trial. Although such data is not available for the present study,
in other work (on number interference) Nicenboim et al. (2017) did collect this information.
There, too, the direct-access model was able to characterize the data better than the baseline
model (Nicenboim & Vasishth, 2017). In future work on Chinese relatives, it would be
helpful to carry out a similar study to determine which dependency was completed in each
trial. In the present work, the modelling at least shows how the extreme values in subject
relatives can be better accounted for by assuming a two-mixture process.

A further question raised by the modelling must be addressed. It is not self-evident
that the mixture model M2 that we settled on above is valid in the following sense: Does it
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recover the true underlying parameters when these are known? We investigate this next.

Validating the mixture model using simulated data

We first simulated data from a mixture distribution with known parameter values, and
then sampled from the models representing the direct-access model (M2), the model that we
settled on. The data were generated from a mixture process defined as follows. Recall that
the mixture model is:

Subject relatives:

yij ∼
{
LogNormal(β + ui + wj , σ

2
e), if retrieval succeeds

LogNormal(β + δ + ui + wj , σ
2
e′), if reanalysis occurs, prob. psr

(4)

Object relatives:

yij ∼
{
LogNormal(β + ui + wj , σ

2
e), if retrieval succeeds

LogNormal(β + δ + ui + wj , σ
2
e′), if reanalysis occurs, prob. por

(5)

The true parameter values were: psr = 0.25, por = 0.21, β = 5.85, δ = 0.93, σe′ = 0.64,
σe = 0.22, σu = 0.24, σw = 0.09.

Using these parameter settings, we generated data first from 37 simulated participants,
and then from 148 participants. In order to mimic the design in the original Gibson and Wu
(2013) experiment, we always had 15 items. The large sample simulation helps us determine
whether the posterior distributions contain the true value of the parameter in the case where
these is enough data to obtain precise posterior distributions.

Having generated simulated data, we fit the mixture model (M2) to these data and
examined the posterior distributions of the parameters in each model.

Results based on simulated data

When the data were generated from a mixture process (simulating 37 or 148 participants
and 15 items), the mixture model M2 can recover all the underlying parameters; this is
shown in Figure 6 for 37 participants and in Figure 7 for 168 participants. These figures
show that the true values of the parameters lie within the range of plausible values implied
by the posterior distributions. In the large-sample simulation, the error term σe is being
overestimated. Nevertheless, the true value of σe that was used for generating the data is
not impossible given the posterior distribution.

Conclusion

We presented a case study demonstrating how informative is to be able to specify
Bayesian hierarchical models for theorizing about the generative process underlying be-
havioural (here, reading time) data. We compared the predictive performance of standard
hierarchical linear models and two-mixture models for Chinese relative clause data. Model
comparison suggests that the increased processing difficulty observed in Chinese subject
relatives may not be due to dependency distance leading to longer reading times, as suggested
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Figure 6 . The vertical lines show the true point values that were used to generate simulated
mixture distribution data (37 participants, and 15 items), and the posterior distributions of
the parameters estimated from the hierarchical mixture model (M2).
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Figure 7 . The vertical lines show the true point values that were used to generate simulated
mixture distribution data (148 participants, and 15 items), and the posterior distributions
of the parameters estimated from the hierarchical mixture model (M2).
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by the DLT and the activation account. Rather, a more plausible explanation for these data
may be in terms of the direct-access model of McElree (2000). Under this view, retrieval
times are not affected by the distance between co-dependents; instead, a higher proportion
of reanalyses occur in subject relatives compared to object relatives. A mixture distribution
generates both subject and object relative clause data, but the proportion associated with
the reanalysis distribution is higher in subject relatives.

More broadly, this paper demonstrates the importance of Bayesian finite mixture
models for theory development. Had we followed the conventional procedure of fitting a
canned linear mixed model to data without questioning the violations of model assumptions,
we would have failed to notice theoretically important patterns in the data. The inherent
flexibility of Bayesian methods allowed us to go beyond one variety of hierarchical model
and to quantitatively explore alternative explanations for the data. This kind of modelling
approach can be profitably used in many different research problems in cognitive science.
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Appendix A
K-fold cross-validation

The K-fold cross-validation algorithm works as follows:

1. Split data pseudo-randomly into K held-out sets y(k), where k = 1, . . . ,K that are a
fraction of the original data, and K training sets, y(−k). Here, we use K = 10, and
the length of the held-out data-vector y(k) is approximately 1/K-th the size of the
full data-set. We ensure that each participant’s data appears in the training set and
contains an approximately balanced number of data points for each condition.

2. Sample from the model using each of the K training sets, and obtain posterior
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distributions ppost(-k)(θ) = p(θ | y(−k)), where θ is the vector of model parameters.

3. The posterior distributions p(θ | y(−k)) are used to compute predictive accuracy for
each held-out data-point yi:

log p(yi | y(−k)) = log
∫
p(yi | θ)p(θ | y(−k)) dθ (6)

4. Given that the posterior distributions p(θ | y(−k)) are summarized by s = 1, . . . , S
simulations, i.e., θk,s, the log predictive density for each data point yi in subset k is
computed as

êlpdi = log
(

1
S

S∑
s=1

p(yi | θk,s)
)

(7)

5. Given that all the held-out data in the K subsets are yi, where i = 1, . . . , n, we obtain
the êlpd for all the held-out data points by summing up the êlpdi for each held-out
data point:

êlpd =
n∑

i=1
êlpdi (8)

The difference between the êlpd’s of two competing models is a measure of relative
predictive performance. We can also compute the standard deviation of the sampling
distribution (the standard error) of the difference in êlpd using the formula discussed in
Vehtari et al. (2017). Letting êlpdi,m0 be the estimated elpd for the i-th data point from
model M0, we can write:

se(êlpdm0 − êlpdm1) =
√
nV ar(êlpdi,m0 − êlpdi,m1) (9)

Appendix B
Stan code for implementing mixture models

Here, we present the essential code chunks necessary to implement the models. We focus on
the Stan code for fitting the models M0 and M2. Listing 1 shows the standard hierarchical
linear model M0. Stan syntax requires separate code blocks. The data block defines the
types of the different variables in the data that is fed into the stan function available in
the library rstan. The parameters block declares the types of the parameters involved in
the model. The model block defines priors and describes how the data are assumed to be
generated. The generated quantities block can be used to record the log likelihood (for
model comparison) and for generating posterior predictive values.

Listings 2-4 show, in three parts, the code for the mixture model M2. New in this code
(Listing 2) is the transformed parameters block. Here, we reparameterize some parameters
in order to make the sampling more efficient (see Stan Development Team, 2016).

Listing 5 shows how the models can be fit using the R package rstan, and how
the models can be compared using the loo package. The latter, an approximation of
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leave-one-out cross-validation, is a faster alternative to the K-fold cross-validation we used.
Leave-one-out cross-validation compares the expected predictive performance of alternative
models by subsetting the data into a training set (for estimating parameters) by excluding
one observation. The difference between the predicted and observed held-out value can then
be used to quantify model quality by successively holding out each observation. As in K-fold,
the sum of the expected log pointwise predictive density, êlpd, can be used as a measure of
predictive accuracy.

The code for K-fold cross validation is slightly more involved as it requires fitting
the data only on the data that is not held out (the training set). A new indicator variable
heldout is therefore added to the data, which has value 0 when a data-point is from the
training set, and value 1 when it is from the held-out set. The modifications needed to the
model block of the code for models M0 and M2 are shown in Listing 6; here, we just use the
indicator variable to estimate parameters using only the training data. Listing 7 shows code
for creating the K subsets of the data and Listing 8 shows the code for carrying out model
comparison.
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data {
int<lower=1> N; //number of data points
real rt[N]; //reading time
real<lower=-1,upper=1> so[N]; //predictor
int<lower=1> J; //number of subjects
int<lower=1> K; //number of items
int<lower=1, upper=J> subj[N]; //subject id
int<lower=1, upper=K> item[N]; //item id

}

parameters {
vector[2] beta; //fixed intercept and slope
vector[J] u; //subject intercepts
vector[K] w; //item intercepts
real<lower=0> sigma_e; //error sd
real<lower=0> sigma_u; //subj sd
real<lower=0> sigma_w; //item sd

}

model {
real mu;
//priors
beta ~ cauchy(0,2.5);
sigma_e ~ cauchy(0,2.5);
sigma_u ~ cauchy(0,2.5);
sigma_w ~ cauchy(0,2.5);
u ~ normal(0,sigma_u); //subj random effects
w ~ normal(0,sigma_w); //item random effects
// likelihood
for (i in 1:N){

mu = beta[1] + u[subj[i]] + w[item[i]] + beta[2]*so[i];
rt[i] ~ lognormal(mu,sigma_e);

}
}
generated quantities{

real log_lik[N];
vector[N] rt_tilde;

for (i in 1:N)
log_lik[i]=lognormal_lpdf(rt[i] | beta[1] +

u[subj[i]] + w[item[i]] + beta[2]*so[i],sigma_e);
for(i in 1:N){

rt_tilde[i] = lognormal_rng(beta[1] +
u[subj[i]] + w[item[i]] + beta[2]*so[i],sigma_e);

}
}

Listing 1: Code for fitting the standard hierarchical linear model M0.
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//Part 1:
data {

int<lower=1> N; //number of data points
real rt[N]; //reading time
int<lower=0,upper=1> SO[N]; //predictor, treatment contrasts
int<lower=1> J; //number of subjects
int<lower=1> K; //number of items
int<lower=1, upper=J> subj[N]; //subject id
int<lower=1, upper=K> item[N]; //item id

}

parameters {
real<lower=0> beta; // only one intercept for both conditions
vector[J] u; //subject intercepts
vector[K] w; //item intercepts
real<lower=0> sigma; //error sd
real<lower=0> sigma_diff;
real<lower=0> sigma_u; //subj sd
real<lower=0> sigma_w; //item sd
real<lower=0,upper=1> prob_sr; //probability of extreme values
real<lower=0,upper=1> prob_or; //probability of extreme values
real<lower=0> delta;

}
transformed parameters{

// reparameterization
real sigmap_e;
real sigma_e;
sigmap_e = sigma + sigma_diff;
sigma_e = sigma - sigma_diff;

}

Listing 2: Part 1 of the code for fitting the hierarchical mixture model M2.
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// Part 2:
model {

//priors
prob_sr ~ beta(1,1);
prob_or ~ beta(1,1);
delta ~ cauchy(0,2.5);
beta ~ cauchy(0,2.5);
sigma ~ cauchy(0,2.5);
sigma_diff ~ normal(0,1);
sigma_u ~ cauchy(0,2.5);
sigma_w ~ cauchy(0,2.5);
u ~ normal(0,sigma_u); //subj random effects
w ~ normal(0,sigma_w); //item random effects
// log likelihood
for (i in 1:N){

if(heldout[i]==0){
if(SO[i]==1){
target += log_sum_exp(log(prob_sr) + lognormal_lpdf(rt[i] | beta +
u[subj[i]] + w[item[i]] + delta, sigmap_e), log1m(prob_sr) +
lognormal_lpdf(rt[i] | beta + u[subj[i]] + w[item[i]], sigma_e) );
}
if(SO[i]==0){
target += log_sum_exp(log(prob_or) + lognormal_lpdf(rt[i] | beta +
u[subj[i]] + w[item[i]] + delta, sigmap_e), log1m(prob_or) +
lognormal_lpdf(rt[i] | beta + u[subj[i]] + w[item[i]], sigma_e) );
}
}

}
}

Listing 3: Part 2 of the code for fitting the hierarchical mixture model M2.
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// Part 3:
generated quantities{

vector[N] rt_tilde;
real<lower=0,upper=1> reanalysis_sr;
real<lower=0,upper=1> reanalysis_or;
real log_lik[N];
real diffprob;
real beta2;
beta2=beta+delta;
diffprob=prob_sr-prob_or;
// likelihood:
for(i in 1:N){

if(SO[i]==1){
log_lik[i] = log_sum_exp(log(prob_sr) + lognormal_lpdf(rt[i] | beta +
u[subj[i]] + w[item[i]] + delta, sigmap_e), log1m(prob_sr) +
lognormal_lpdf(rt[i] | beta + u[subj[i]] + w[item[i]], sigma_e) );
}
if(SO[i]==0){
log_lik[i] = log_sum_exp(log(prob_or) + lognormal_lpdf(rt[i] | beta +
u[subj[i]] + w[item[i]] + delta, sigmap_e), log1m(prob_or) +
lognormal_lpdf(rt[i] | beta + u[subj[i]] + w[item[i]], sigma_e) );
}

}
//posterior predictive values:

for(i in 1:N){
// SR:
if(SO[i]==1){

reanalysis_sr = bernoulli_rng(prob_sr);
if(reanalysis_sr) {
rt_tilde[i] = lognormal_rng(beta +

u[subj[i]] + w[item[i]] + delta, sigmap_e);
} else {

rt_tilde[i] = lognormal_rng(beta +
u[subj[i]] + w[item[i]], sigma_e);

}
}

// OR:
else {

reanalysis_or = bernoulli_rng(prob_or);
if(reanalysis_or) {
rt_tilde[i] = lognormal_rng(beta +
u[subj[i]] + w[item[i]] + delta, sigmap_e);
} else {

rt_tilde[i] = lognormal_rng(beta +
u[subj[i]] + w[item[i]], sigma_e);

}
}

}
}

Listing 4: Part 3 of the code for fitting the hierarchical mixture model M2.
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library(rstan)
m0 <- stan(file = "models/m0.stan",

data = headnoun.dat,
iter = 2000, chains = 4,

refresh=0)

paramnames<-c("beta[1]","beta[2]","sigma_e",
"sigma_u","sigma_w")

## summarize results:
(m0_smry<-print(m0,pars=paramnames))

m2 <- stan(file = "models/m2postpred.stan",
data = headnoun.dat,
iter = 2000,
chains = 4,control =

list(adapt_delta = 0.999),
refresh=0)

paramnames<-c("beta","delta","diffprob",
"prob_sr","prob_or","sigmap_e",
"sigma_e",
"sigma_u","sigma_w")

(m2_smry<-print(m2,pars=paramnames))

#model comparison:
library(loo)
loglikm0<-extract_log_lik(m0)
loom0<-loo(loglikm0)
loglikm2<-extract_log_lik(m2)
loom2<-loo(loglikm2)
compare(loom0,loom2)

Listing 5: Example code showing how the Stan models can be fit to the data, and how model
comparison can be carried out using an approximation of leave-one-out cross-validation.
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// Modification to data block:
data {

//... other declarations as before
real<lower=0,upper=1> heldout[N];// 0 = not held out: training data

}
// Modifications to model block for M0:

// likelihood
for (i in 1:N){

if(heldout[i]==0){
mu = beta[1] + u[subj[i]] + w[item[i]] + beta[2]*so[i];
rt[i] ~ lognormal(mu,sigma_e);
}

}
//Modifications to model block for M2:
// likelihood:

for (i in 1:N){
if(heldout[i]==0){
if(SO[i]==1){
target += log_sum_exp(log(prob_sr) + lognormal_lpdf(rt[i] | beta +
u[subj[i]] + w[item[i]] + delta, sigmap_e), log1m(prob_sr) +

lognormal_lpdf(rt[i] | beta + u[subj[i]] + w[item[i]], sigma_e) );
}
if(SO[i]==0){
target += log_sum_exp(log(prob_or) + lognormal_lpdf(rt[i] | beta +
u[subj[i]] + w[item[i]] + delta, sigmap_e), log1m(prob_or) +
lognormal_lpdf(rt[i] | beta + u[subj[i]] + w[item[i]], sigma_e) );
}
}

}

Listing 6: Modifications needed to the M0 and M2 code in order to carry out K-fold
cross-validation.
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# given data in the following format:
#> head(headnoun[,c(1,2,3,7,10,11)])
# subj item type rt so SO
#94 1 13 obj-ext 1561 0.5 0
#221 1 6 subj-ext 959 -0.5 1
#341 1 5 obj-ext 582 0.5 0
row.names(headnoun)<-1:dim(headnoun)[1]
headnoun$row<-row.names(headnoun)
K <- 10
d <- headnoun
G <- list()
for (i in 1:K) {

G[[i]] <- sample_frac(group_by(d, subj),
(1/(K + 1 - i)))

G[[i]]$k <- i
d <<- anti_join(d, G[[i]],

by = c("subj", "item",
"type", "rt","so","SO"))

}
# We create a data-frame again:
dK <- bind_rows(G)
# We save the order of the dataframe
dK <- dK[order(dK$row), ]
ldata <- plyr::llply(1:K, function(i) {

list(N = nrow(dK), rt = dK$rt,
so = dK$so,
SO = dK$SO,

subj = as.numeric(as.factor(dK$subj)),
J = length(unique(dK$subj)),
item = as.numeric(as.factor(dK$item)),
K = length(unique(dK$item)),
heldout = ifelse(dK$k == i, 1, 0))

})

Listing 7: Code for generating K cross-validation sets.
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## M0:
pointwisem0 <- list()
for(i in 1:10){

hnxval.dat<-ldata[[i]]
m0xval <- stan(file = "models/m0xval.stan",

data = hnxval.dat,
iter = 4000, chains = 4,

refresh=0)
m0xval<-extract(m0xval,pars="log_lik")
loglik<-m0xval$log_lik
hldout<-which(hnxval.dat$heldout==1)
logmeans<-rep(NA,length(hldout))
for(j in 1:length(hldout)){

logmeans[j]<-log(mean(exp(loglik[,hldout[j]])))
}

pointwisem0[[i]]<-logmeans
}
pointwisem0_flat<-Reduce(c,pointwisem0)
(elpdm0<-sum(pointwisem0_flat))
(elpdm0_se<-sqrt(length(pointwisem0_flat)*

var(pointwisem0_flat)))
## M2:
pointwisem4 <- list()
for(i in 1:10){

hnxval.dat<-ldata[[i]]
m2xval <- stan(file = "models/m2postpredxval.stan",

data = hnxval.dat,
iter = 4000, chains = 4,

refresh=0)
m4xval<-extract(m2xval,pars="log_lik")
loglik<-m2xval$log_lik
hldout<-which(hnxval.dat$heldout==1)
logmeans<-rep(NA,length(hldout))
for(j in 1:length(hldout)){

logmeans[j]<-log(mean(exp(loglik[,hldout[j]])))
}

pointwisem2[[i]]<-logmeans
}
pointwisem2_flat<-Reduce(c,pointwisem2)
elpdm2<-sum(pointwisem2_flat)
elpdm2_se<-sqrt(length(pointwisem2_flat)*

var(pointwisem2_flat))
## k-fold cv:
(kfoldelpddiff<-elpdm2-elpdm0)
(kfoldelpdse<-sqrt(length(pointwisem0_flat)*

var(pointwisem0_flat-
pointwisem2_flat)))

Listing 8: Code for carrying out the cross-validation.
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