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Improving approximate Bayesian computation via quasi Monte
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Alexander Buchholz Nicolas Chopin
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Abstract

ABC (approximate Bayesian computation) is a general approach for dealing with models
with an intractable likelihood. In this work, we derive ABC algorithms based on QMC (quasi-
Monte Carlo) sequences. We show that the resulting ABC estimates have a lower variance than
their Monte Carlo counter-parts. We also develop QMC variants of sequential ABC algorithms,
which progressively adapt the proposal distribution and the acceptance threshold. We illustrate
our QMC approach through several examples taken from the ABC literature.

Keywords: Approximate Bayesian computation, Likelihood-free inference, Quasi Monte
Carlo, Randomized Quasi Monte Carlo, Adaptive importance sampling

1 Introduction

Since its introduction by Tavaré et al. (1997) approximate Bayesian computation (ABC) has re-
ceived growing attention and has become today a major tool for Bayesian inference in settings
where the likelihood of a statistical model is intractable but simulations from the model for a given
parameter value can be generated. The approach of ABC is as convincing as intuitive: We first
sample a value from the prior distribution, conditional on this prior simulation an observation from
the model is generated. If the simulated observation is sufficiently close to the observation that has
been observed in nature, we retain the simulation from the prior distribution and assign it to the
set of posterior simulations. Otherwise the simulation is discarded. We repeat this procedure until
enough samples have been obtained.

Since then several computational extensions related to ABC have been proposed. For instance
the use of MCMC as by Marjoram et al. (2003) has improved the simulation of ABC posterior
samples over the simple accept–reject algorithm. The use of sequential approaches by Beaumont
et al. (2009), Sisson et al. (2009), Del Moral et al. (2012) and Sedki et al. (2012) made it possible to
exploit the information from previous iterations and eventually to choose adaptively the schedule
of thresholds ε. Besides the question of an efficient simulation of high posterior probability regions,
the choice of summary statistics, summarizing the information contained in the observation and the
simulated observation, has been investigated (Fearnhead and Prangle, 2012). See Marin et al. (2012)
and Lintusaari et al. (2017) for two recent reviews. Moreover, the introduction of more machine
learning driven approaches like random forests (Marin et al., 2016) Gaussian processes (Wilkinson,
2014), Bayesian optimization (Gutmann and Corander, 2016), expectation propagation (Barthelmé
and Chopin, 2014) and neural networks (Papamakarios and Murray, 2016) have been proposed. A
post-processing approach via kernel density estimation was studied in Blum (2010).

In this paper we take a different perspective and approach the problem of reducing the variance
of ABC estimators. We achieve this by introducing so called low discrepancy sequences in the
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simulation of the proposal distribution. We show that this allows to reduce significantly the variance
of posterior estimates.

The rest of the paper is organized as follows. Section 2 reviews the basic ideas of approximated
Bayesian computation and sets the notation. Section 3 introduces the concept of low discrepancy
sequences. Section 4 brings the introduced concepts together and provide the theory that underpins
the proposed idea. Section 5 presents a first set of numerical examples. Section 6 explains how to
use our ideas in a sequential procedure which adapts progressively the proposal distribution and
the value of ε. Section 6 illustrates the resulting sequential ABC procedure.

2 Approximate Bayesian computation

2.1 Reject-ABC

Approximate Bayesian computation is motivated by models such that (a) the likelihood function
is difficult or expensive to compute; (b) simulating from the model (for a given parameter θ) is
feasible.

The most basic ABC algorithm is called reject-ABC. It consists in simulating pairs (θ, y), from
the prior p(θ) times the likelihood p(y|θ), and keep those pairs such that δ(y, y?) ≤ ε, where y? is
the actual data, and δ : Y × Y → R+ is some distance (e.g. Euclidean). The target distribution of
this rejection algorithm is:

pε(θ, y) =
1

Zε
p(θ)p(y|θ)1 {δ(y, y?) ≤ ε} ,

and its marginal distribution with respect to θ is:

pε(θ) =
1

Zε
p(θ)Pθ (δ(y, y?) ≤ ε) (1)

where Pθ denotes a probability with respect to y ∼ p(y|θ), and Zε =
∫

Θ p(θ)Pθ (δ(y, y?) ≤ ε) dθ is
the normalising constant.

As ε → 0, (1) converges to the true posterior distribution. Actually, δ is often not a distance
but a pseudo-distance of the form: δ(y, y?) = ‖s(y) − s(y?)‖2, where ‖ · ‖2 is the Euclidean norm,
and s(y) is a low-dimensional, inperfect summary of y. In that case, pε(θ) → p(θ|s(y?)). This
introduces an extra level of approximation, which is hard to assess theoretically and practically.
However, in this paper we focus on how to approximate well (1) for a given δ (and ε), and we refer
to e.g. Fearnhead and Prangle (2012) for more discussion on the choice of δ or s.

2.2 Pseudo-marginal importance sampling

A simple generalisation of reject-ABC is described in Algorithm 1. For n = 1, . . . , N , we sample
the parameter θn ∼ q(θ), the latent variable xn ∼ qθn(x), and reweight (θn, xn) according to

wn =
p(θn)

q(θn)
× L̂ε(xn)

where, for x ∼ qθ, L̂ε(x) is a unbiased estimate of the probability Pθ (δ(y, y?) ≤ ε):∫
qθ(x)L̂ε(x)dx = Pθ (δ(y, y?) ≤ ε) .
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Input: Observed y?, prior distribution p(θ), proposal distribution q(θ), distance function
δ(·, ·), target threshold ε, number of simulations N

Result: Set of weighted samples (θn, xn, wn)n∈1:N

for n = 1 to N do
Sample θn ∼ q(θ)
Sample xn ∼ qθn(x)
Set wn = p(θn)L̂ε(xn)/q(θn)

end

Algorithm 1: ABC importance sampling algorithm

The marginal distribution (with respect to θ) of the target distribution of this importance
sampling scheme is again (1). In particular, the quantity

φ̂N =

∑N
n=1wnφ(θn)∑N

n=1wn
, (2)

is a consistent (as N → ∞) estimate of expectation Epε(θ)[φ(θ)], for φ : Θ → R. Since the
importance weight involves an unbiased estimator, the whole procedure may be viewed as a pseudo-
marginal sampler, in the spirit of Andrieu and Roberts (2009).

A a special case, take the proposal q(θ) to be equal to the prior, p(θ), and take x = y,
L̂ε(x) = 1 {δ(y, y?) ≤ ε}; then we recover essentially the same procedure as reject-ABC (except
that N stands for the number of proposed points, rather than the number of accepted points).
However, the generalized scheme allows us (a) to sample θn from a distribution q(θ) which may be
more likely (than the prior) to generate high values for the probability Pθ (δ(y, y?) ≤ ε); and (b) to
use a more sophisticated unbiased estimate for Pθ (δ(y, y?) ≤ ε).

Regarding (b), we consider two unbiased schemes in this work. In the first part, we focus on:

x = y1:M , qθ(x) =
M∏
m=1

p(ym|θ), L̂ε(x) =
1

M

M∑
m=1

1{d(ym, y
?) ≤ ε}. (3)

for a certain M ≥ 1. The possibility to associate more than one datapoints to each parameter θn
was considered in e.g. Del Moral et al. (2012). Bornn et al. (2015) showed that M = 1 usually
represents the best variance vs CPU time trade-off when using Monte Carlo sampling, however we
shall see that this result does not hold when using QMC.

Later on in the paper, we shall consider an alternative unbiased estimator, based on properties
of the negative binomial distribution. More precisely, assume that, for a given θ, we sample
sequentially y1, y2, . . . ∼ p(y|θ), until we reach the time k where r ≥ 2 datapoints are such that
δ(yn, y

?) ≤ ε; then k is distributed according to a negative binomial distribution with parameters
r and p = Pθ (δ(y, y?) ≤ ε), and the minimum-variance unbiased estimator of Pθ (δ(y, y?) ≤ ε) is
(Johnson et al., 2005, Chap. 8):

L̂ε(x) =
r − 1

k − 1

where x = y1:k.
The second unbiased estimator is closely related, but not equivalent to, the r-hit kernel of Lee

(2012); see also Lee and  Latuszyński (2014). Specifically, Lee (2012) proposed a MCMC kernel
that generates two negative binomial variates (one for the current point, and one for the proposed
point) at each iteration. The invariant distribution of this kernel is such that, marginally, θ is
distributed according to (1); however this invariant distribution differs from the target distribution
of our importance sampler.
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In more practical terms, we shall use the latter estimator in situations where we would like to
set ε beforehand to some value such that Pθ (δ(y, y?) ≤ ε) may be small. In that case, this estimator
automatically adjusts the CPU budget (i.e. the number of simulations from the likelihood) so as
to ensure that the number of simulated y−values is non-zero. But we shall return to this point in
Section 6.

3 Quasi Monte Carlo

Low discrepancy sequences (also called quasi Monte Carlo sequences), are used to approximate
integrals over the [0, 1]d hypercube:

E [ψ(U)] =

∫
[0,1]d

ψ(u)du,

that is the expectation of the random variable ψ(U), where U ∼ U
(
[0, 1]d

)
. The basic Monte Carlo

approximation of the integral is ÎN := N−1
∑N

n=1 ψ(un), where each un ∼ U
(
[0, 1]d

)
. The error of

this approximation is OP (N−1/2), since Var[ÎN ] = Var[ψ(U)]/N .
It is possible to improve on this basic approximation, by replacing the random variables un by

a low-discrepency sequence; that is, informally, a deterministic sequence that covers [0, 1]d more
regularly. This idea is illustrated in Figure 1.

More formally, the general notion of discrepancy of a given sequence is defined as follows:

D(u1:N ,A) := sup
A∈A

∣∣∣∣∣ 1

N

N∑
n=1

1 {un ∈ A} − λd(A)

∣∣∣∣∣ ,
where λd(A) is the volume (Lesbegue measure on Rd) of A and A is a set of measurable sets. When
we fix the sets A to be intervals anchored at 0 we obtain the so called star discrepancy:

D∗(u1:N ) := sup
[0,b]

∣∣∣∣∣ 1

N

N∑
n=1

1 {un ∈ A} − λd(A)

∣∣∣∣∣ ,
where [0,b] =

∏d
i=1[0, bi], 0 ≤ bi ≤ 1. The importance of the notion of discrepancy and in particular

the star discrepancy is highlighted by the Koksma-Hlawka inequality, which relates the error of the
integration to the coverage of the space and the variation of the function that is integrated:∣∣∣∣∣

∫
[0,1]d

ψ(u)du− 1

N

N∑
n=1

ψ(un)

∣∣∣∣∣ ≤ V (ψ)D∗(u1:N ),

where V (ψ) is the variation in the sense of Hardy and Krause. This quantity is closely linked
to the smoothness of the function ψ; see Kuipers and Niederreiter (2012) and Leobacher and
Pillichshammer (2014) for more details.

It is possible to construct sequences un such that, when N is fixed in advance, D∗(u1:N ) is
O
(
N−1(logN)d−1

)
, and, when N is allowed to grow, i.e., the sequence can be generated iteratively,

then D∗(u1:N ) = O
(
N−1(logN)d

)
. Then ∀τ > 0 the error rate is O

(
N−1+τ

)
. Consequently, QMC

integration schemes are asymptotically more efficient than MC schemes. One observes in practice
that QMC integration outperforms MC integration even for small N in most applications, see e.g.
the examples in Chapter 5 of Glasserman (2013).
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Figure 1: Uniform random (left) and Halton (right) point set of length 256 in [0, 1]2.

3.1 Randomized quasi Monte Carlo

A drawback of QMC is that it does not come with an easy way to assess the approximation error.
RQMC (randomized quasi Monte Carlo) amounts to introduce randomness in a QMC sequence,

in such a way that un ∼ U
(
[0, 1]d

)
, marginally. The quantity ÎN = N−1

∑N
n=1 ψ(ui) then becomes

an unbiased estimate of the integral of interest. One may assess the approximation error by com-
puting the empirical variance over repeated simulations.

The simplest way to obtain a RQMC sequence is to randomly shift a QMC sequence: Let
v ∼ U

(
[0, 1]d

)
, and u1:N a QMC sequence; then

ûn := un + v mod 1 (component wise)

is a RQMC sequence.
A more sophisticated approach, called scrambled nets, was introduced by Owen (1997) and later

refined in Owen et al. (2008). The main advantage of this approach is that under the assumption
of smoothness of the derivatives of the function, the speed of convergence can be even further
improved, as stated in the following Theorem.

Theorem 1 Owen et al. (2008) Let f : [0, 1]d → R be a function such that its cross partial deriva-
tives up to order d exist and are continuous, and let (un)n∈1:N be a relaxed scrambled (λ, t,m, d)-net
in base b with dimension d with uniformly bounded gain coefficients. Then,

Var

(
1

N

N∑
n=1

f(un)

)
= O

(
N−3 log(N)(d−1)

)
,

where N = λbm.

In words, ∀τ > 0 the RQMC error rate isO(N−3/2+τ ) when a scrambled (λ, t,m, d)-net is used. This
result has the only inconvenience that the rate of convergence only holds for certain N . However,
a more general result has recently been shown by Gerber (2015)[Corollary 1], where if f ∈ L2 and
(un)n∈1:N is a scrambled (t, d)-sequence, then ∀N ∈ N,

Var

(
1

N

N∑
n=1

f(un)

)
= o

(
N−1

)
.
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3.2 Mixed sequences and a central limit theorem

One drawback of low discrepancy sequences is that the speed of convergence deteriorates with
the dimension. In some situations, a small number of components contributes significantly to
the variance of the target. One then might choose to use a low discrepancy sequence for those
components and an ordinary Monte Carlo approach on the rest. This idea of using a mixed sequence
is closely linked to the concept of effective dimension, see Owen (1998). Based on the randomness
induced by the Monte Carlo part a central limit theorem (CLT) may be established:

Theorem 2 Ökten et al. (2006) Let uk = (q1:d
k , Xd+1:s

k ) be a mixed sequence of dimension s where

q1:d
k denotes the deterministic QMC part and Xd+1:s

k denotes the random independent MC part. Let

f : [0, 1]s → Rt, t ∈ N∗ a bounded, square integrable function, Yk = f(uk), ÎN = N−1
∑N

k=1 Yk, and

µk := E[Yk] =

∫
[0,1]s−d

f(uk)dX
d+1:s,

SN :=
1

N

(
N∑
k=1

Yk −
N∑
k=1

µk

)
=

(
ÎN −

1

N

N∑
k=1

µk

)
,

σ2
k := Var[Yk] =

∫
[0,1]s−d

f(uk)f(uk)
TdXd+1:s

−

(∫
[0,1]s−d

f(uk)dX
d+1:s

)(∫
[0,1]s−d

f(uk)dX
d+1:s

)T
,

C2
N := Var[NÎN ] =

N∑
k=1

σ2
k.

Then, as N → +∞, C2
N/N → Cqmc−mixed and

N1/2SN
L→ N

(
0, C2

qmc−mixed

)
,

where

C2
qmc−mixed =

∫
[0,1]s

f(x)f(x)Tdx

−
∫

[0,1]d

(∫
[0,1]s−d

f(u)dXd+1:s

)(∫
[0,1]s−d

f(u)dXd+1:s

)T
dq1:d.

As a direct corollary of the previous Theorem we obtain that, provided f has a finite variation in

the sense of Hardy and Krause, N1/2(ÎN − I)
L→ N (0, C2

qmc−mixed), where I =
∫
f(u)du. This is

due to the fact that

N1/2
(
ÎN − I

)
= N1/2SN +N1/2

(
1

N

N∑
k=1

µk − I

)

and the second term on the right hand side converges deterministically to 0. In their work Ökten
et al. (2006) present only a univariate version of their cental limit theorem, but the multivariate
extension is straightforward.

As a direct corollary their work shows that the asymptotic variance of the mixed sequence
estimator is smaller than for the same estimator based on Monte Carlo sequences in dimension one.
We extend this result to the multivariate case.
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Corollary 1 Let C2
qmc−mixed be the asymptotic variance of an estimator based on a mixed sequence

as defined in Theorem 2. Let C2
mc be the variance of the same estimator based on a pure MC

sequence, e.g., when d = 0. Then

C2
qmc−mixed � C2

mc

in the sense of positive definite matrices.

Moreover, we present a result here that allows us to apply the same technique to mixed sequences
that combine Monte Carlo and randomized quasi Monte Carlo sequences.

Theorem 3 Let SRQMC
N be the MC-RQMC equivalent of SN under the same conditions as in

Theorem 2. Then

N1/2SRQMC
N

L→ N (0, C2
rqmc−mixed),

where C2
rqmc−mixed = C2

qmc−mixed.

These results may be understood as follows. The randomness in the Monte Carlo sequence allows the
construction of a central limit theorem. The part associated to the (R)QMC sequences converges
faster to zero than the part associated to the Monte Carlo sequence. This leads to a reduced
asymptotic variance for estimators based on mixed sequences.

4 Improved ABC via (R)QMC

Recall that we described our ABC importance sampler as an algorithm that samples pairs (θn, xn)
from q(θ)qθ(x), where xn consists of datapoints generated from the model. In most ABC problems,
using (R)QMC to generate the θn should be easy, but this should not be the case for the xn’s.
Indeed, the simulator used to generate datapoints from the model may be a complex black box,
which may require a very large, or random, number of uniform variates. Thus, we contemplate
from now on generating the θn’s using (R)QMC. That is, θn = Γ(un), where u1:N is a QMC or
RQMC sequence, and Γ is a function such that Γ(U), U ∼ U

(
[0, 1]d

)
, is distributed according

to the proposal q(θ); and xn|θn ∼ qθn is a random variate. In other words, (θn, xn) is a mixed
sequence.

We already know from the previous section that an estimate based on a mixed sequence con-
verges at the Monte Carlo rate, OP (N−1/2), but has a smaller asymptotic variance than the same
estimate based on Monte Carlo. In fact, a similar result may be established directly for the actual
(non-asymptotic) variance. Let ÎN :=

∑N
n=1 ϕ(θn, xn)/N be an empirical average for some measur-

able function ϕ. For simplicity, we assume here that the θn’s are either random variates, or RQMC
variates. That is, in both cases, θn ∼ q marginally. Then

Var[ÎN ] = Var
[
E{ÎN |θ1:N}

]
+ E

[
Var{ÎN |θ1:N}

]
= Var

[
1

N

N∑
n=1

Exn∼qθn {ϕ(θn, xn)|θn)}

]
+

1

N
× Eθn∼q

[
Varxn∼qθn {ϕ(θn, xn)|θ}

]
(4)

The first term is O(N−1) when the θn’s are generated using Monte Carlo, and should be o(N−1)
under appropriate conditions when the θn’s are a RQMC sequence. On the other hand, the second
term is O(N−1) in both cases. As a corrolary, the variance of ÎN is smaller when using a mixed
sequence, for N large enough.

The point of the following sections is to generalize this basic result to various ABC estimates
of interest.

7



4.1 Improved estimation of the normalization constant

We first consider the approximation of the normalization constant of the ABC posterior:

Zε =

∫
Pθ (δ(y, y?) ≤ ε) p(θ)dθ =

∫
L̂ε(x)qθ(x)p(θ)dxdθ.

Recall that, for the moment, we take x = y1:M , qθ(x) =
∏M
m=1 p(ym|θ) and

L̂ε(x) =
1

M

M∑
m=1

1 {δ(ym, y?) ≤ ε} .

Thus, a natural estimator of Zε is

ẐN :=
1

N

N∑
n=1

p(θn)

q(θn)

[
1

M

M∑
m=1

1 {δ(yn,m, y?) ≤ ε}

]
(5)

where the θn’s are either a Monte Carlo or RQMC sample from the proposal q(θ), and yn,m ∼
p(y|θn) for n = 1, . . . , N , m = 1, . . . ,M .

When the θn’s are a Monte Carlo sample, it is always best to take M = 1, as noted by Bornn
et al. (2015). This may be seen by calculating both terms of decomposition (4) when applied to
the estimator of the normalization constant ẐN :

Var
[
E{ẐN |θ1:N}

]
=

1

N
×Varq

[
p(θ)

q(θ)
Pθ (δ(y, y?) ≤ ε)

]
(6)

E
[
Var{ẐN |θ1:N}

]
=

1

NM
×
∫

Θ

p(θ)2

q(θ)
Pθ (δ(y, y?) ≤ ε) {1− Pθ (δ(y, y?) ≤ ε)}dθ. (7)

Increasing M increases the CPU cost and decreases the variance of ẐN . To account for both

simultaneously, we look at the adjusted variance, M × Var
[
ẐN

]
. From (6) and (7), we see that

the adjusted variance increases with M , hence the best CPU time vs error trade-off is obtained by
taking M = 1.

Now, consider the situation where the θn’s form a RQMC sequence. As noted in the previous
section, (7) still holds in that case, however the first term of the decomposition should converge
faster.

Proposition 1 Let f(θ) = {p(θ)/q(θ)}Pθ (δ(y, y?) ≤ ε), assume that θn = Γ(un) where u1:N is a
scrambled (λ, t,m, d)-net, and assume that f ◦ Γ ∈ L2 . Then,

Var
[
E{ẐN |θ1:N}

]
= o

(
N−1

)
.

This result is a direct consequence of Corollary 1 of Gerber (2015) and the fact

E{ẐN |θ1:N} =
1

N

N∑
n=1

f(θn) =
1

N

N∑
n=1

f ◦ Γ(un).

It has two corollaries. First, the variance of ẐN is smaller when using a RQMC sequence for the θn’s
(forN large enough). Second, in that case, the adjusted variance is such thatM Var[ẐN ] = O(N−1),
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with a constant that does not depend on M . Thus taking M > 1 (within a reasonable range) should
have basically no impact on the CPU time vs error trade-off in the RQMC case.

Taking M > 1 has the following advantage: it makes it possible to consistently estimate (7)
with the quantity

σ̂2(Zε) :=
1

N2(M − 1)
×

N∑
n=1

p(θn)2

q(θn)2
L̂ε(xn){1− L̂ε(xn)}. (8)

where L̂ε(xn) = M−1
∑M

m=1 1{δ(yn,m, y?) ≤ ε}. As (7) corresponds to the non-negligible part of

the variance of ẐN , this allows us to obtain asymptotic confidence intervals for ẐN .
We have focused on the RQMC case for now on, but a similar result holds for QMC sequences.

Note, however, that we cannot use directly decomposition (4) when the θn’s are deterministic.

Proposition 2 Assume that f ◦ Γ (where f and Γ are defined as in Proposition 1) has a finite
variation in the sense of Hardy and Krause, and that the ratio p/q is upper-bounded, p(θ)/q(θ) ≤ C,
then

M × E
[(
ẐN − Zε

)2
]

= O(N−1)

with a constant that does not depend on M . Furthermore, the mean square error above is smaller
than in the Monte Carlo case, for N large enough.

4.2 Improved estimation of general importance sampling estimators

We now turn to the analysis of general importance sampling estimators of the form

φ̂N =

∑N
n=1wnφ(θn)∑N

n=1wn
. (9)

As these estimators are ratios, we cannot apply decomposition (4) directly. However, we may
apply the following inequality, due to Agapiou et al. (2015):

E
{
φ̂N − Epεφ

}2
≤ 2

Z2
ε

E

{
1

N

N∑
n=1

wnφ(θn)− ZεEpεφ(θ)

}2

+ E

{
1

N

N∑
n=1

wn − Zε

}2


provided |φ| ≤ 1. Both terms are mean square errors of empirical averages, and hence may be
bounded directly using the results of the previous section. Thus, we see that, again, when the θn
are generated with (R)QMC, the means square error of estimate φ̂N is O(M−1N−1) as N → +∞.
However, this inequality does not make it possible to compare the performance of our RQMC-ABC
procedure with Monte Carlo-based ABC. For this, we now consider the asymptotic behavior of
these estimators.

Theorem 4 Let φ : Θ → R be a bounded function, φ̄ = φ − Epεφ, φ̂N defined as (9), then, under
the same conditions as Proposition 2, and assuming further that function u→ φ̄(Γ(u))f(Γ(u)) has
a finite variation (in the sense of Hardy and Krause), one has that

N1/2
(
φ̂N − Epεφ

)
L→ N

(
0, σ2

mixed(φ)
)
,

where, using the short-hand b(θ) = Pθ (δ(y, y?) ≤ ε),

σ2
mixed(φ) =

1

MZ2
ε

∫
Θ

p(θ)2

q(θ)
φ̄(θ)2b(θ){1− b(θ)}dθ. (10)
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Alternatively, if the parameter values θn were generated through Monte Carlo sampling, one
would obtain a similar central limit theorem, but with asymptotic variance

σ2
MC(φ) =

1

Z2
ε

∫
Θ

p(θ)2

q(θ)
φ̄(θ)2

[
b(θ){1− b(θ)}

M
+ b(θ)2

]
dθ

which is larger than or equal to σ2
mixed(φ).

As for the normalising constant, we observe that the adjusted (asymptotic) variance, i.e. M ×
σ2

mixed(φ), is constant with respect to M . Thus, taking M > 1 does not deteriorate the performance
of the algorithm (in terms of variance relative to CPU time). And it makes it possible to estimate
consistently the asymptotic variance (10) (and thus compute confidence intervals) using

σ̂2
mixed(φ) =

1

(ẐN )2N2(M − 1)

N∑
n=1

p(θn)2

q(θn)
{φ(θn)− φ̂N}2L̂ε(xn)

{
1− L̂ε(xn)

}
.

5 Numerical examples

We illustrate in this section the improvement brought by (R)QMC through several numerical ex-
amples. Thus we compare three different approaches, all corresponding to Algorithm 1, but with
particles generated using either Monte Carlo (ABC-IS), Quasi-Monte Carlo (ABC-QMC), or ran-
domised QMC (ABC-RQMC).

We take q(θ) = p(θ), i.e. points are generated from the prior, and, unless explicitely stated, we
take M = 1. (The problem of adaptively choosing q will be considered in the next section.)

In that case, weights wn are either 0 or 1 (according to wether δ(yn, y
?) ≤ ε), and we set ε so

that the proportion of non-zero weights is close to some pres-specified value, e.g. 10−3.

5.1 Toy model

The first model we consider is the toy model used in Marin et al. (2012) that tries to recover the
mean of a superposition of two Gaussian distributions with identical mean and different variances:

θ ∼ U
(

[−10, 10]d
)
,

y|θ ∼ 1

2
N (θ; 0.1Id) +

1

2
N (θ; 0.001Id).

The use of this model is motivated by the fact that the dimension of the model d can be scaled up
easily. We set y? = 0d and δ(y, y?) = ‖y − y?‖2.

We run the three considered algorithms with N = 106. Figure 2a shows that the MC and QMC
approximations matches closely; for this plot, ε = 0.01 (leading to a proportion of non-zero weights
close to 10−3), and d = 1.

Figure 3 compares the empirical variance (over 50 runs) obtained with the three considered
approaches, as a function of ε, when estimating the expectation (left pane) and variance (right
pane) of the ABC posterior. Again, N = 106, d = 1, and ε is chosen so as to generate a proportion
of non-zero weights that vary from 0 to 10%.
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(a) (b)

Figure 2: Left: Approximation of the posterior distribution based on N = 106 simulations and the
threshold ε = 0.01. Right: Adjusted variance (variance times M) of the normalization constant
as a function of M : the dashed line corresponds to the variance estimator given by (8), the solid
line corresponds to the empirical variance of the estimator based on 75 runs. Based on N = 105

simulations, ε = 1, d = 1, and a QMC sequence for the θn’s.

(a) (b)

Figure 3: Variance of posterior estimates as ε varies (Left: ABC posterior mean; Right: ABC
posterior variance). Plots based on 50 runs, with N = 106 simulations. The x−axis corresponds to
a varying ε, which is set so that the proportion of non-zero weights (i.e. the proportion of simulated
yn such that δ(yn, y

?) ≤ ε) varies from 0 to 10%.
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(a) Left (b) Right

Figure 4: Same caption as for Figure 3b, except left (resp. right) panel corresponds to d = 4 (resp.
d = 8); posterior estimate is the ABC posterior expectation in both cases.

We observe a significant variance reduction when using either QMC or RQMC and for not too
small values of ε, but the variance reduction vanishes as ε→ 0. However, interestingly, the variance
reduction (again for not too small values of ε) remains significant when we increase the dimension,
see Figures 4. (For d > 1, the considered estimated quantity is the expectation of the average of
the d components of θ with respect to the ABC posterior.)

Finally, we consider increasing M , so as to be able to estimate the variance of a given ABC
estimate from a single run of Algorithm 1, when using (R)QMC, as explained at the end of Section
4.1. The considered estimate is that of the normalising constant of the ABC posterior. We see that
the variance estimate is fairly stable even for small values of M , and that it is close to the actual
variance (over 75 runs) of the estimate as can be seen in Figure 2b

Note that both quantities are multiplied by M in this plot. This allows us to check that the
adjusted variance (accounting for CPU time) remains constant, as expected. As already explained,
this means that taking M > 1 is not sub-optimal (in terms of the variance vs CPU time trade-off),
while it allows us to estimate the variance of any estimate obtained from the (R)QMC version of
Algorithm 1.

5.2 Lotka-Volterra-Model

The Lotka-Volterra model, see Toni et al. (2009), is commonly used in population dynamics to
study the interaction in predator-prey models, for example. The model is characterized by the
respective size of the populations evolving over time and denoted by (X1, X2), taking values in Z2.

There are three possible transitions: the prey (denoted by X1) may grow by one entity with
rate α, a predation may happen with rate β, that reduces the prey by one unit and increases the
predator population (denoted by X2) by one unit, or the predator may die with rate γ. The system
is summarized by the following rate equations:

(X1, X2)
α→ (X1 + 1, X2),

(X1, X2)
β→ (X1 − 1, X2 + 1),

(X1, X2)
γ→ (X1, X2 − 1),

with the corresponding hazard rates αX1, βX1X2 and γX2, respectively. The hazard rates char-
acterize the instantaneous probability that the system changes to a new state. The parameter of
the model is θ = (α, β, γ). The initial population is fixed to (50, 100).
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We simulate from the model using Gillespie’s algorithm, see Toni et al. (2009), for T = 30 time
steps, and record the size of the population at times ti = 2i, where i = 0, · · · , 15. This gives two
discrete time series of length 16. As a distance function for comparing our true observation and
the pseudo-observations, we use the Euclidean norm ‖ · ‖2 applied to the differences of the series.
As a prior we use u ∼ U [−6, 2]3, which is then transformed to θ = exp(u).

As in the previous section, we compare the empirical variance over 50 runs of a given estimate
obtained from the different approaches. The estimated quantity is the expectation of (α+β+γ)/3
with respect to the ABC posterior.

(a) (b)

Figure 5: Variance of the mean and variance estimator for the Lotka–Volterra model. Plots based
on 50 repetitions of 105 simulations from the prior and the model. The accepted observations
correspond to quantiles based on the smallest distances δ(yn, y

?). Left: Variance of the posterior
variance estimator. Right: Variance of the posterior variance estimator

We observe the same phenomenon that in the previous example: the variance reduction brought
by either QMC or RQMC is significant for not too small values of ε, but it vanishes as ε→ 0.

5.3 Tuberculosis mutation

The following application is based on the estimation of tuberculosis reproduction rates as in Tanaka
et al. (2006). The interest lies in recovering the posterior distribution of birth, death and mutation
rates (α, β, γ) of a tuberculosis population that has been recorded in San Francisco over a period
from 1991 to 1992.

The simulator of the model is based on an underlying continuous time Markov process where t
denotes the time and N(t) denotes the size of the population. Starting from one single bacterium
the individual can either replicate itself with rate α, die with rate γ or mutate to a new genotype
with rate β. The number of bacteria having the same genotype is recorded at every step and
the simulation is run forward until a size of N(t) = 104 has been obtained. At every step in
the simulation a bacterium is chosen uniformly at random and one of the three events (α, β, γ)
is applied to it. After simulating a population of 104 bacteria, the simulation is stopped and a
subpopulation of 473 bacteria is sampled. The ensuing population is characterized by the cluster
size of bacteria that have the same genotype. The data is available in Table 1. For instance, there
were 282 clusters with only one bacterium with the same genotype and there were 20 clusters that
contained two bacteria with the same genotype.
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Cluster size 1 2 3 4 5 8 10 15 23 30
Number of clusters 282 20 13 4 2 1 1 1 1 1

Table 1: Tuberculosis bacteria genotype data

The parameters must satisfy the conditions α + β + γ = 1, 0 ≤ α, β, γ ≤ 1, and α > γ. (The
last constraint prevents the population from dying out.) Thus, we let β = 1 − α − γ, and assign
a uniform prior to (α, γ), subject to α > γ. Tanaka et al. (2006) used as a summary statistic
for the data the quantities y = (g/473, 1 −

∑
i(ni/473)2), where g denotes the number of distinct

clusters in the sample and ni is the number of observed bacteria in the ith genotype cluster. The
distance between a pseudo observation and the observed data is finally calculated as the Euclidean
distance between y and y?. Figure 6a shows the recovered posterior distribution after application
of a sequential sampling approach, that is described in section 7. We see our method, denoted
by QMC and the method of Del Moral et al. (2012), denoted by Del Moral recover the same
posterior distribution. There remain some artifacts in the second method, due to a slightly higher
acceptance threshold ε = 0.12 compared to ε = 0.08 as in the QMC approach. We estimate the
ABC posterior expectation of (α+γ)/2 and then compare the empirical variance of this estimator.
The result of the repeated simulation of this estimator is shown in Figure 6b, where we show the
value of VarMC /Var(R)QMC , where VarMC is the variance of the posterior estimator based on a
MC sequence. This quantity allows to assess the variance reduction factor as a function of the
acceptance threshold. Again, we observe a declining variance reduction as ε → 0. Nevertheless,
the variance reduction even for the smallest acceptance threshold is still of factor 1.5, which means
that we need 33% fewer simulations in order to achieve the same precision of the estimator.

(a) (b)

Figure 6: Left: Posterior distribution of the tuberculosis mutation model. The x–axis corresponds
to birth rate α, the y–axis corresponds to the death rate β. Right: Variance reduction factors
(computed from 50 runs) as a function of the proportion of non-zero weights.

5.4 Concluding remarks

As predicted by the theory, we observed that using QMC (or RQMC) to generate the parameter
values (in Algorithm 1) always reduce the variance of ABC estimates. However, the variance
reduction becomes small when ε→ 0. But it should be noted that any static ABC algorithm, such
as Algorithm 1 becomes very wasteful when ε is small, as most simulated datapoints lies outside
the ball defined by the constraint δ(y, y?) ≤ ε in such a case. In order to take ε smaller and
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smaller, it seems to make more sense to progressively refine the proposal distribution, based on
past simulations. This is the point of sequential ABC algorithms, which we discuss in the next two
sections.

6 Sequential ABC

6.1 Adaptive importance sampling

One major drawback of Algorithm 1 is that the quality of the approximation in (2) depends on
how well the proposal distribution q(θ) matches the target distribution pε(θ). If, for example, the
proposal is very flat and the target is spiky due to a small value of ε, only a small number of
particles will cover the region of interest. The idea of sequential ABC algorithms is therefore to
sequentially decrease ε over a range of time steps t ∈ 0 : T while adapting the proposal distribution
qt(θ) so as to make it closer and closer to the true posterior.

In the current setting we will use a flexible parametric approximation qt(θ) of the ABC posterior
pεt(θ), that is estimated from the the samples (θt−1

n , wt−1
n )n∈1:N . This distribution qt(θ) is then

used to simulate new particles (θtn)n∈1:N . The corresponding algorithm is given as pseudo-code in
Algorithm 2.

Input: Observed y?, prior distribution p(θ), simulator qθ(x), initial threshold ε0, number of
simulations N , weighting procedure L̂ε(x).

Result: Set of weighted samples (θtn, x
t
n, w

t
n)n∈1:N,t∈0:T

for n = 1 to N do
Sample θ0

n ∼ p(θ) ;
set w0

n = 1 ;

end
for t = 1 to T do

Set εt and qt(θ) based on (θt−1
n , xt−1

n , wt−1
n )n∈1:N ;

for n = 1 to N do
Sample θtn ∼ qt(θ) ;
Sample xtn ∼ qθtn(x) ;

Set wtn = p(θtn)L̂εt(x
t
n)/qt(θ

t
n) ;

end

end

Algorithm 2: ABC adaptive importance sampling algorithm

6.2 Adapting the proposal qt

6.2.1 Gaussian proposal

The simplest strategy one may think of to adapt qt is to set it to a Gaussian fit of the previous
weighted sample. Although basic, we shall see that this approach tends to work well in practice,
unless of course the actual posterior is severely multimodal.

6.2.2 Mixture of N components

The SMC sampler of Sisson et al. (2009) may be viewed as a particular version of Algorithm 2,
where qt is set to a mixture of N Gaussian components centred on the N previous particles θt−1

n ,
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with covariance matrix Σ̂t−1 set to twice the empirical covariance of these particles. The proposal
distribution reads

qt(θ) =

∑N
n=1w

t−1
n N (θ|θt−1

n , 2Σ̂t−1)∑N
n=1w

t−1
n

.

This results in an algorithm of complexity O(N2) since for every proposed new particle θtn,
computing the corresponding weight involves a sum over N terms.

6.2.3 Mixture proposal with a small number of components

As an intermediate solution between a single Gaussian distribution and a mixture of N Gaussian
distributions, we suggest to use a Gaussian mixture with a small number of components. We
suggest to estimate the mixture via a Variational Bayesian procedure, see Blei et al. (2016), but
other methods as Expectation Maximization could also be used. The proposal distribution reads

qt(θ) =

J∑
j=1

αt−1
j N (θ|µ̂t−1

j , λΣ̂t−1
j ),

where αt−1
j , µ̂t−1

j , and Σ̂t−1
j denote respectively the weight, mean, and covariance matrix of cluster

j estimated at iteration t − 1. Again, we artificially inflate the covariances with a factor λ > 1 in
order to put more mass in the tails of the proposal distribution. Regarding J , we may either fix it
arbitrarily or use the Variational Bayesian approach to choose it automatically.

In order to generate QMC or RQMC points from such a mixture distribution, we set the

number of samples for each cluster j to N t
j =

⌊
αt−1
j N

⌋
and potentially adjust N t

j as to make

sure that
∑

j N
t
j = N holds. For each cluster j, a (R)QMC sequence of length N t

j is generated

and transformed to the sample of a Gaussian distribution N (θ|µ̂t−1
j , λΣ̂t−1

j ). This is achieved via
the transformation of the (R)QMC sequence (un)n∈1:Nt

j
via the component-wise quantile function

Φ−1(·): θtn = µ̂t−1
j + Ct−1Φ−1(un), where Ct−1 is the Cholesky triangle of the covariance matrix:

Ct(Ct)
T = λΣ̂t−1

j .
This approach has the following advantages. First, we maintain flexibility by allowing to cover

several modes, as the posterior distribution might be multi–modal. Second, the use of a limited
number of clusters makes sure that we can benefit from the better coverage of the space that comes
from the use of (R)QMC sequences. Using only a small number of clusters preserves the structure
of the (R)QMC point set. In contrast, using the approach of Sisson et al. (2009) would destroy the
properties of the low discrepancy or scrambled net sequences and hence the variance reduction that
comes from the (R)QMC sequence could vanish. (This has been found as a result of our simulation
studies, not shown here.)

6.3 Adapting simultaneously εt and the number of simulations per parameter

As discussed in Section 2.2, the weights L̂εt(x
t
n) are unbiased estimators of the probabilities

Pθtn
(δ(y?, y) ≤ εt), which may be obtained in two ways: (a) as an average over a fixed number

M of simulations; or (b) as a function of the number of simulations required so that k of them are
at a ε distance of y?; that random number follows a negative binomial distribution.

So far, we have focused on (a), and even took M = 1 in our first set of numerical examples in
Section 5. If we use this strategy, we may follow Del Moral et al. (2012) in adapting εt according
to the ESS (effective sample size, Kong et al., 1994); i.e. at iteration t, once we have simulated
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the θnt ’s and the xnt ’s, we solve numerically (using bisection) in εt the equation ESS = αN , for
α ∈ (0, 1), where

ESS =
(
∑N

n=1w
t
n)2∑N

n=1(wtn)2

and wnt = p(θnt )L̂ε(x
n
t )/q(θnt ), L̂ε(x

t
n) = M−1

∑M
m=1 1{δ(y?, ytn,m) ≤ εt)}.

This approach usually works well during the first iterations of Algorithm 2, but it is bound to
collapse as ε gets too small: as ε→ 0, Pθ(δ(y?, y) ≤ ε)→ 0 whatever θ, and as result most weights
wnt become zero when εt is too small. One remedy is to set M to a much larger value, so that
weights take much longer to collapse. However, this is expensive and wasteful, given that the first
iterations would work well with a much smaller M .

In that sequential context, the negative binomial strategy for computing the weights becomes
appealing, as it makes it possible to adapt automatically the CPU effort to a given ε: we may
decrease εt at each iteration, while ensuring that the variance of the weights (as estimates of the
probabilities Pθtn

(δ(y?, y) ≤ εt) does not blow up. Of course, the price to pay is that iterations
become more and more expensive.

In practice, we found that that this approach was unwieldy during the first iterations of the
algorithm: during that time, a few simulated parameters θtn are such that the corresponding prob-
ability that δ(y?, y) ≤ εt is much smaller than for the other particles. As a result, the negative
binomial estimate requires generating a lot of observations for those particles, which typically gets
discarded later.

Thus, in the end, we recommend the following hybrid strategy:

• At iterations t = 0 to t = T1 (say T1 = 10), use the ‘fixed M ’ (say M = 10) strategy to
compute the weights, and adapt εt using the ESS.

• At iterations t > T1, switch to the negative binomial strategy for computing the weights,
and adapt εt as follows: set it to the median of the distance values δ(y?, yn) where the yn’s
denote here all the artificial observations generating during the previous iteration such that
δ(y?, yn) ≤ εt−1. Stop when εt gets below a certain target value ε?.

7 Numerical illustration of the sequential procedure

7.1 Toy model

We return to the toy model of Section 5.1, taking this time d = 3. We compare five algorithms:
three versions of Algorithm 2 with the θtn’s generated using, respectively, Monte Carlo, Quasi-
Monte Carlo, and RQMC; the sequential ABC algorithm of Sisson et al. (2009), which (as explained
previously) is essentially Algorithm 2 with a mixture proposal with N components; and finally the
algorithm of Del Moral et al. (2012). (The algorithm of Del Moral et al. (2012) generates the θtn by
evolving the particles resampled at the previous iteration through a Markov kernel; see the paper
for more details.)

Regarding the adaptive choice of εt, we use the hybrid strategy outlined in the previous section
for our MC, QMC and RQMC algorithms, we use the ESS-based strategy for Del Moral et al.
(2012)’s algorithm, and we use the following strategy for Sisson et al. (2009)’s: εt is set to the
median of the distances δ(y?, yn) computed at the previous iteration. For all these algorithms, we
set M = 10.

For this toy model, we simply consider the basic strategy for adapting qt outlined in Section
6.2.1, i.e. qt is a Gaussian fit to the previous set of particles. The five algorithms are run with
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either N = 103 (Figure 7) or N = 104 particles (Figure 8); in both cases the algorithms are stopped
when εt ≤ ε? = 1. In both figures, we plot the adjusted MSE at iteration t as a function of εt,
where the adjusted MSE is the empirical MSE of a given estimate (over 50 runs) times the number
of observations generated from the model up to time t. The adjusted MSE make it possible to
account for the different running times of the algorithms. See also Table 2 for a direct comparison
in terms of both CPU effort and MSE.

The considered estimates are the same as in Section 5.1, i.e. the ABC posterior expectation
and variance of θ̄, the average of the components of vector θ. At least for posterior expectations,
we see that the QMC and RQMC versions outperform the MC version of our algorithm, which in
turn outperforms the sequential ABC algorithms of Sisson et al. (2009) and Del Moral et al. (2012).

(a) (b)

Figure 7: three-dimensional Gaussian toy example. Algorithms run with N = 103 particles. Ad-
justed variance (as defined in the text) at iteration t, as function of εt, for the following posterior
estimate: exceptation (left) and variance (right) of θ̄ = (θ1 + θ2 + θ3)/3.

(a) (b)

Figure 8: Same as Figure 7, except algorithms are run with N = 104 particles.
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Sampling method MSE θ MSE Var θ number simulated datapoints εT
AIS-MC 0.00162 0.00037 44,980 0.65

AIS-QMC 0.00039 0.00014 32,919 0.65
AIS-RQMC 0.00049 0.00013 42,088 0.65
Del Moral 0.00117 0.00018 580,000 1.0

Sisson 0.00117 0.00010 125,928 0.95

Table 2: Toy example, performance of the five considered sequential algorithms at the final iteration
T , for N = 103 particles

7.2 Bimodal Gaussian distribution

In order to illustrate the flexibility that comes from using a mixture of Gaussians for the proposal
we consider a model that yields a multi-modal posterior:

θ ∼ U
(

[−10, 10]d
)
,

yi
iid∼ 1

2
N (θ, Id) +

1

2
N (−θ, Id), i = 1, . . . , 100.

We simulate y? from the model. The model is not identifiable and thus generates a bimodal
posterior. Regarding the distance δ, we follow the idea of Bernton et al. (2017) and use the optimal
transport distance between y and y∗, more specifically the earth-movers-distance.

(a) (b)

Figure 9: Simulation for the bimodal distribution. Left: recovered posterior distribution. Right:
average (over 50 runs) of cumulative number of simulations according to acceptance threshold;
algorithms were run with N = 103 particles.
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(a) (b)

Figure 10: Same plot as in Figure 7 for the bimodal example and N = 103.

We set ε? = 5× 10−3. This value has been chosen as before as a small quantile of the realized
distances after 106 simulations from the prior and the simulator. The recovered posterior is shown
in Figure 9a. Figure 9b illustrates the adaptivity in the simulation from the simulator achieved
via the negative binomial approach. As the threshold becomes smaller and smaller, the number of
necessary simulations start to increase severely. In the end, the number of necessary simulations of
the different methods catch up with each other. Still, the approaches based on (R)QMC achieve a
lower variance of the estimator as is illustrated in Figures 10a and 10b.

7.3 Tuberculosis mutation

We now return to the tuberculosis example presented in Section 5.3; we set the target value ε? =
0.01, and restrict the CPU budget to 106 simulations from the model, as these simulations are
computationally intensive. We see that again the QMC approach performs best in terms of number
of simulations needed and also in terms of variance times computational budget; see Figures 11a
and 11b, and Table 3. The approach of Sisson et al. (2009) exceeds the total computation budget
and thus does not reach the fixed threshold. Figures 11a and 11b illustrate the effect of the hybrid
strategy for adapting ε and the number of simulations per parameter value (Section 6.3). The kink
in the lines for the adaptive importance sampling approaches corresponds to the moment when the
weighting is obtained via the negative binomial distribution.

Sampling method Variance θ Variance Var θ number sim. datapoints εT
AIS-MC 0.376 5.916× 10−6 419,353 0.008

AIS-QMC 0.380 1.156× 10−6 212,183 0.008
AIS-RQMC 0.378 1.001× 10−6 318,196 0.008
Del Moral 0.375 1.065× 10−6 495,000 0.01

Sisson 0.393 1.834× 10−7 1,367,949 0.021

Table 3: Tuberculosis example, performance of the five considered sequential algorithms at the final
iteration T , for N = 500 particles
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(a) (b)

Figure 11: Same plot as in Figure 7 for the tuberculosis example and N = 500 particles

Acknowledgments

The research of the first author is funded by a GENES doctoral scholarship. The research of
the second author is partially supported by a grant from the French National Research Agency
(ANR) as part of the Investissements dAvenir program (ANR-11-LABEX-0047). We are thankful
to Mathieu Gerber who made comments that helped us to improve the paper.

References

Agapiou, S., Papaspiliopoulos, O., Sanz-Alonso, D., and Stuart, A. M. (2015). Importance sampling:
computational complexity and intrinsic dimension. arXiv preprint 1511.06196.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo
computations. Ann. Statist., 37(2):697–725.
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8 Appendix

8.1 Proofs of main results

8.1.1 Proof of Corollary 1

For the mixed sequences we have

lim
N→∞

1

N

N∑
k=1

σ2
k,qmc-mixed = C2

qmc-mixed

and for the Monte Carlo estimate we have

lim
N→∞

1

N

N∑
k=1

σ2
k,mc = C2

mc

where

C2
qmc-mixed =

∫
[0,1]s

f(x)f(x)Tdx−
∫

[0,1]d

(∫
[0,1]s−d

f(u)dXd+1:s

)(∫
[0,1]s−d

f(u)dXd+1:s

)T
dq1:d

23



and

C2
mc =

∫
[0,1]s

f(x)f(x)Tdx−

(∫
[0,1]s

f(x)dx

)(∫
[0,1]s

f(x)dx

)T
.

We must show that(∫
[0,1]s

f(x)dx

)(∫
[0,1]s

f(x)dx

)T
�
∫

[0,1]d

(∫
[0,1]s−d

f(u)dXd+1:s

)(∫
[0,1]s−d

f(u)dXd+1:s

)T
dq1:d,

in the sense of positive definite matrices. This inequality holds in the univariate case due to the
Cauchy-Schwartz inequality. In the multivariate case, let

∫
[0,1]s−d f(uk)dXd+1:s = A

(
q1:d
)
. We

rewrite: ∫
[0,1]d

A
(
q1:d
)

dq1:d

∫
[0,1]d

A
(
q1:d
)T

dq1:d �
∫

[0,1]d
A
(
q1:d
)
A
(
q1:d
)T

dq1:d.

In order to check the positive definiteness let v ∈ Rs. We check

vT
∫

[0,1]d
A
(
q1:d
)

dq1:d

∫
[0,1]d

A
(
q1:d
)T

dq1:dv ≤ vT
∫

[0,1]d
A
(
q1:d
)
A
(
q1:d
)T

dq1:dv,∫
[0,1]d

vTA
(
q1:d
)

dq1:d

∫
[0,1]d

A
(
q1:d
)T

vdq1:d ≤
∫

[0,1]d
vTA

(
q1:d
)
A
(
q1:d
)T

vdq1:d.

While noting that vTA
(
q1:d
)
∈ R and A

(
q1:d
)T
v ∈ R,∀v ∈ Rs we are back in the univariate case

and the inequality holds. �

8.1.2 Proof of Theorem 3

The statement of the theorem is equivalent to limN→∞ |P(TN ≤ t) − P(Z ≤ t)| = 0 for all t ∈ Rs,
TN = N1/2SRQMC

N , and Z a random variable distributed according to the Gaussian limit.
When conditioning on the random element V in the RQMC sequence, we have that

lim
N→∞

P(TN ≤ t|V = v) = P(Z ≤ t)

for almost all v, by Theorem 2, as a RQMC sequence is a QMC sequence with probability one.
Furthermore, |P(TN ≤ t|V = v)| ≤ 1, thus the function is dominated. For all N we have

|P(TN ≤ t)− P(Z ≤ t)| =
∣∣∣∣∫
B
{P(TN ≤ t|V = v)− P(Z ≤ t)} dP(v)

∣∣∣∣ ,
≤
∫
B
|P(TN ≤ t|b)− P(Z ≤ t)|dP(v).

And

lim
N→∞

∫
B
|P(TN ≤ t|V = v)− P(Z ≤ t)| dP(v) = 0,

due to the dominated convergence theorem. Therefore

lim
N→∞

|P(TN ≤ t)− P(Z ≤ t)| = 0.

�
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8.1.3 Proof of Proposition 2

Since the θn’s are deterministic,

E
[
ẐN

]
=

1

N

N∑
n=1

p(θn)

q(θn)
Pθn (δ(y, y?) ≤ ε) =

1

N

N∑
n=1

f(θn)

Var[ẐN ] =
1

MN2

N∑
n=1

{
p(θn)

q(θn)

}2

Pθn (δ(y, y?) ≤ ε) {1− Pθn (δ(y, y?) ≤ ε)}

and
∣∣∣E [ẐN]− Zε∣∣∣ = O(N τ−1) for any τ > 0, by Koksma-Hlawka inequality. By the standard

decomposition of the mean square error:

E
[
(ẐN − Zε)2

]
=
(
E
[
ẐN

]
− Zε

)2
+ Var

[
ẐN

]
and since p(θn)/q(θn) ≤ C, we see that that the MSE times M is O(N−1).

8.1.4 Proof of Theorem 4

One has: (
φ̂N − Epεφ

)
=

(∑N
n=1wnφ(θn)∑N

n=1wn
− Epεφ

)

=
N−1

∑N
n=1wnφ̄(θn)

N−1
∑N

n=1wn

where φ̄ = φ − Epεφ. Since the denominator converges almost surely to Zε, and the numerator
(times N1/2) converges to a Gaussian limit (per Theorem 2), we may apply Slutsky’s theorem to
obtain the desired result.

More precisely, the numerator has a null expectation, and is such that

N−1/2
N∑
n=1

wnφ̄(θn)
L→ N

(
0, τ2(φ)

)
where

τ2(φ) =

∫
Θ

p(θ)2

q(θ)
φ̄(θ)2 b(θn){1− b(θn)}

M
dθ

again by direct application of Theorem 2, and using the fact that, for a fixed θn,

Varxn∼qθn [L̂ε(xn)] =
b(θn){1− b(θn)}

M

with b(θ) = Pθ (δ(y, y?) ≤ ε). �
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