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Abstract

Mixture models are among the most popular tools for model based
clustering. However, when the dimension and the number of clusters is
large, the estimation as well as the interpretation of the clusters become
challenging. We propose a reduced-dimension mixture model, where the
K components parameters are combinations of words from a small dic-
tionary - say H words with H � K. Including a Nonnegative Matrix
Factorization (NMF) in the EM algorithm allows to simultaneously esti-
mate the dictionary and the parameters of the mixture. We propose the
acronym NMF-EM for this algorithm. This original approach is moti-
vated by passengers clustering from ticketing data: we apply NMF-EM to
ticketing data from two Transdev public transport networks. In this case,
the words are easily interpreted as typical slots in a timetable.
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A Users location 28

1 Introduction

1.1 Model-based clustering and urban computing
With the growing ability to collect and store data in transports system, elec-
tricity consumption and more, urban computing is becoming a major tool in
urban policy and planning [37]. For example, for transports system, there is a
growing litterature on ticketing and smart-card data processing in trains and
buses [24, 26, 10, 28, 7], bike-sharing systems [30, 8, 5, 15] or taxis [27].

The range of machine learning and statistical tools used in urban computing
is large. This goes from descriptive data-mining techniques as in [24] to statisti-
cal models. Model based clustering usually involve mixture models, that can be
estimated by the EM algorithm. We refer the reader to [13] for an introduction
to model based clustering, to [22] for an introduction to mixture models and to
Chapter 9 in [3] for a general introduction to the EM algorithm (among oth-
ers). In order to ease the following discussion, let us introduce our notations for
mixture models. Assume that we are given a parametric family of distributions
(fθ)θ∈RM . We assume the observations Y1, . . . , Yn are i.i.d from a distribution
of the form

K∑
k=1

pkfθ·,k(·), (1)

where each θ·,k ∈ RM is a column of a K ×M matrix θ. Also, for the sake of
concision, let p = (p1, . . . , pK) ∈ RK . A way to understand these models, that
are useful for clustering purposes, is to introduce i.i.d hidden class variables:
Zi = (Zi,1, . . . , Zi,K) ∼ Mult(p, 1) (multinomial distribution). Then Yi drawn
from (1) can be obtained by:

Yi
∣∣(Zi,k = 1) ∼ fθ·,k(·).

Mixture models were used by [10, 8, 5] for transports data, with very convincing
results.

1.2 Dimension reduction in mixture models: variable se-
lection

However, there are still a few issues with these models. When the dimensionM is
large, the estimation of the matrix θ, that is, ofM×K parameters, is challenging
from a computational perspective, moreover, the estimates are likely to have a
large variance (curse of dimensionality). And more importantly in practice, it
becomes more difficult to provide an interpretation to the cluster parameters
θ·,k ∈ RM . For example, [10] consider the Yi’s as passengers profile, that is,
weekly timetables of transport usage by passengers - generated by multinomial
distribution fθ·,k(·). Depending on the scale of the grid, the dimension of the
profiles can be large. And it is indeed argued in [7] that some profiles in [10]
are not easily interpretable. It is then necessary to reduce the dimension - that
is, to seek for a matrix θ in a space with dimension much smaller than M ×K.
Up to our knowledge, the only approach proposed to this purpose was variable
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selection, that is, idendification of “useless” components in the Yi’s, leading to
a reduction of the parameter space RM . This approach was used succesfully in
many applications and is well-understood in theory [29, 32, 20, 21]; we refer the
reader to the very nice and recent review [12] for a state-of-the-art and more
references.

1.3 Dimension reduction in mixture models: the NMF-
EM algorithm

Still, dimension reduction is not reducible to variable selection: we simply re-
mind the reader that PCA performs indeed a reduction of the dimension without
selecting variables. In the case where θ ∈ RM×K+ we can also think of Nonneg-
ative Matrix Factorization (NMF). Introduced by [17], NMF rewrites columns
of a given matrix as positive combinations of elements in a small dictionary.
These elements are often refered to as “words”. It turns out that this dictionary
is often easily interpretable. NMF was succesfully used in document cluster-
ing [34, 31], collaborative filtering and recommender systems on the Web [16],
dictionary learning for images [17], topic extraction in texts [25] or time series
recovering [23] - among others. NMF was also used as a tool in transports data
in [15, 27, 28], but in a rather different way of what follows. In our setting, we
would simply rewrite θ1,1 . . . θ1,K

...
. . .

...
θM,1 . . . θM,K


︸ ︷︷ ︸

θ

=

 ϑ1,1 . . . ϑ1,H

...
. . .

...
ϑM,1 . . . ϑM,H


︸ ︷︷ ︸

ϑ

 Λ1,1 . . . Λ1,K

...
. . .

...
ΛH,1 . . . ΛH,K


︸ ︷︷ ︸

Λ

with H ≤ K, under the assumption that all the entries in ϑ and Λ are nonneg-
ative. When H � K, the dimension reduction is substantial.

In a previous work [7], we proposed to use an approximate NMF on the
data Y1, . . . , Yn and then to apply a (model-free) clustering algorithm on the
decomposed observations. The improvement in terms of interpretability with
respect to previous work was striking.

However, this approach was completely ad hoc and not satisfying from a
theoretical perspective for two reasons. First, there are many possible crite-
rion to approximate NMF: the Poisson-likekihood criterion used in [17, 18], the
quadratic criterion (Gaussian-likelihood) used in Chapter 9 in [6] and in [18],
the Ikuro-Saito divergence used in [11]... Secondly, as it was a model-free ap-
proach, it did not answer the question of the choice of the criterion. The choice
of a model as (1) indeed imposes a natural criterion: namely, the likelihood.
Our proposition is then simply to consider the mixture model with NMF. That
is, Y1, . . . , Yn are i.i.d from

gp,ϑ,Λ(·) =

K∑
k=1

pkf(ϑΛ)·,k(·) (2)

parametrized by p, Λ and ϑ. Note that we can still introduce i.i.d random
variables Zi = (Zi,1, . . . , Zi,K) ∼ Mult(p, 1) (multinomial distribution). Then
Yi drawn from (2) can be obtained by:

Yi
∣∣(Zi,k = 1) ∼ f(ϑΛ)·,k(·).
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For short, put Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn). The log-likelihood is
given by

`(ϑ,Λ, p|Y ) =

n∑
i=1

log

(
K∑
k=1

pkf(ϑΛ)·,k(Yi)

)
.

Note that, in some sense, this could be seen as a bridge between “model free
clustering” relying on NMF or spectral clustering as in [9, 36] and model-based
clustering as in [13]. Of course, the maximization of this log-likelihood is not
easier than for (usual) mixture models, that are actually a special case of (2)
(that can be seen by taking H = K and Λ = IK , the identity matrix of size K).
We then propose to adapt the EM algorithm to this setting. We introduce the
completed log-likelihood

`(ϑ,Λ, p|Y,Z) =

n∑
i=1

K∑
k=1

Zi,k log
(
pkf(ϑΛ)·,k(Yi)

)
.

A step of the EM algorithm, given current parameters (ϑ(c),Λ(c), p(c)) would
then be as follows.

E-step Put

Q(c)(ϑ,Λ, p) = Eϑ(c),Λ(c),p(c) [`(ϑ,Λ, p|Y,Z)|Y ]

=

n∑
i=1

K∑
k=1

Eϑ(c),Λ(c),p(c) [Zi,k|Y ] log
(
pkf(ϑΛ)·,k(Yi)

)
and note that

t
(c)
i,k := Eϑ(c),Λ(c),p(c) [Zi,k|Y ] =

p
(c)
k f(ϑ(c)Λ(c))·,k(Yi)

K∑
k′=1

p
(c)
k′ f(ϑ(c)Λ(c))·,k′

(Yi)

. (3)

M-step Compute

(ϑ(c+1),Λ(c+1), p(c+1)) := arg max
ϑj,h,Λh,k≥0

Q(c)(ϑ,Λ, p). (4)

Obviously, the challenging step is the M-step. While we obviously have, for
k ∈ {1, . . . ,K},

p
(c+1)
k =

n∑
i=1

t
(c)
i,k

n∑
i=1

K∑
k′=1

t
(c)
i,k′

,

the nonnegativity constraint on ϑ and Λ makes the optimization with respect
to these two matrices much harder. Many options might be possible, depending
on the form of the density functions fu(·). In general we suggest to use an
alternating optimization method with respect to ϑ and Λ as done in NMF [17,
18]. Since then, many algorithms were proposed for NMF, and most rely on
alternate optimization. We cannot list them all as the number of variants is
huge. We mention ADMM described in [6, 33], Bayesian versions studied in [25,

4



1], using variational approximations and Monte-Carlo methods respectively...
We also refer the reader to [19] for a numerical comparison of the different
methods. In many applications, the simplest algorithm - the multiplicative
method of [17, 18] - is very efficient. So this is the method we will use in
Sections 2 and 3. This method iterates a step in ϑ, and a step in Λ. Each step
is shown to improve the fit criterion in [18]. Note that the author claims that it
also leads to convergence, but as argued in [14] the proof of this fact is actually
incomplete. Some theoretical work is still needed there.

By now we already have introduced our algorithm and we hope that the
reader has a clear idea of its general motivations. The end of the papers is
organized as follows. We remind that our objective was the analysis of ticketing
data. In Section 2 we explicit the model, and the NMF-EM algorithm, in the
case of mixture of multinomials meant to represent temporal passengers profiles
as in [10] - note that we will use this to represent stations profiles as well.
We then present results on ticketing data from two networks provided by the
Transdev Group in Section 3.

2 The NMF-EM algorithm for mixture of multi-
nomials

2.1 The mixture of multinomials model
In [10] the authors propose to model a passenger temporal profile by a mixture of
multinomial distribution. Namely, the time and days of smart card validations of
a passenger i are recorded over a period of time (e.g. 1 month). The numbers of
travels, Ni, is not our variable of interest, and will be considered as deterministic.
We obtain as a result a vector

Xi = (Xi,1, . . . , Xi,M )T ∈ RM

where each coordinates represents the number of travels at a given pair time-day
during the considered period. We consider a hourly grid, that is, Mon-12am,
Mon-1am, etc... to Sun-11pm, with means that M = 7×24 = 168. An example
of traveler profile is given in Figure 1.

Figure 1: Temporal profile of a network user, taken from the data described in
Section 3. Opacity is proportional to the number of smart-card validations.

5



It is natural to assume that there are clusters of passengers with rather
similar profiles: for examples, employees in the same company or students in
the same class are likely to commute at similar times. We introduce hidden
variables for the clusters, Zi ∈ {0, 1}K with Zi,k = 1 when individual i belongs
to cluster k. Assuming that the average profile of cluster k is given by θ·,k ∈ RM
we write

Xi

∣∣(Zi,k = 1) ∼Mult(θ·,k, Ni).

However, according to our factorization assumption: θ = (θ·,1| . . . |θ·,K) = ϑΛ
where ϑ is M ×H and Λ is H ×K for some H ≤ K, we can rewrite:

Xi

∣∣(Zi,k = 1) ∼Mult((ϑΛ)·,k, Ni).

And the model is:

gp,ϑ,Λ(Xi) =

K∑
k=1

pk

Ni! M∏
j=1

(ϑΛ)
Xi,j

j,k

Xi,j !

 .
The log-likelihood is given by

`(ϑ,Λ, p|X) =

n∑
i=1

log


K∑
k=1

pk

Ni! M∏
j=1

(ϑΛ)
Xi,j

j,k

Xi,j !

 .

Note that the θ·,k = (ϑΛ)·,k are in the simplex

SM = {(t1, . . . , tM ) ∈ RM+ : t1 + · · ·+ tM = 1}.

So we impose the same restriction on ϑ·,k and on the Λ·,j . LetMM,H,K denote
the set of all pairs (ϑ,Λ) of matrices M × H and H × K respectively, with
ϑ·,k,Λ·,j ∈ SM for any k and j. Note that we actually have H(M − 1) +K(H −
1) +K − 1 degrees of freedom for (ϑ,Λ) ∈ MM,H,K and p ∈ SK , a fact that is
useful to compute model selection criterion like AIC and BIC (see the discussion
on model selection below).

Remark 2.1. The reader might notice some similarity with the Latent Dirich-
let Allocation (LDA) model in [4]. Indeed, there is a similar “two layers of
mixtures” structure, in the sense that the parameters (θ·,k)1≤k≤k are themselves
mixtures of a small number H of hyperparameters (ϑ·,h)1≤h≤H (also refered to
as “words”). Then, the observations are drawn from distributions depending on
the (θ·,k)1≤k≤k. The main difference with [4] is the mixture structure in the
distribution of the Xi’s: we indeed assume that many passengers will actually
have similar temporal profiles. In [4] there is no assumption that some groups
of documents could have the same topic distribution.

Let us denote (ϑ̂, Λ̂, p̂) the MLE, that is, a maximizer, for (ϑ,Λ) ∈MM,H,K

and p ∈ SK , of `(ϑ,Λ, p|X). This is our ideal estimator. The aim of the NMF-
EM algorithm is to approximate (ϑ̂, Λ̂, p̂).
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2.2 Explicit form of NMF-EM for mixture of multinomials

From (3), values t(c)i,k are given by

t
(c)
i,k =

p
(c)
k Ni!

M∏
j=1

(
H∑

h=1

ϑ
(c)
j,hΛ

(c)
h,k

)Xi,j

Xi,j !

K∑
k′=1

p
(c)
k′ Ni!

M∏
j=1

(
H∑

h=1

ϑ
(c)
j,hΛ

(c)

h,k′

)Xi,j

Xi,j !

=

p
(c)
k

M∏
j=1

(
H∑
h=1

ϑ
(c)
j,hΛ

(c)
h,k

)Xi,j

K∑
k′=1

p
(c)
k′

M∏
j=1

(
H∑
h=1

ϑ
(c)
j,hΛ

(c)
h,k′

)Xi,j
.

We have

Q(c)(ϑ,Λ, p) =

n∑
i=1

K∑
k=1

t
(c)
i,k log

pkNi!
M∏
j=1

(
H∑
h=1

ϑj,hΛh,k

)Xi,j

Xi,j !


=

n∑
i=1

K∑
k=1

t
(c)
i,k

[
log(pk) + log(Ni!)

+

M∑
j=1

(
Xi,j log

(
H∑
h=1

ϑj,hΛh,k

)
− log(Xi,j !)

)]
.

As mentioned earlier,

p
(c+1)
k =

n∑
i=1

t
(c)
i,k

n∑
i=1

K∑
k′=1

t
(c)
i,k′

,

and

(ϑ(c+1),Λ(c+1)) = arg max
(ϑ,Λ)∈MM,H,K

K∑
k=1

M∑
j=1

(
n∑
i=1

Xi,jt
(c)
i,k

)
log

(
H∑
h=1

ϑj,hΛh,k

)
.

For ease of reading, let us note M (c)
j,k =

∑n
i=1Xi,jt

(c)
i,k for short. Then the

previous equation becomes

(ϑ(c+1),Λ(c+1)) = arg max
(ϑ,Λ)∈MM,H,K

K∑
k=1

M∑
j=1

M
(c)
j,k log

(
H∑
h=1

ϑj,hΛh,k

)
. (5)

To minimize this criterion under the constraint is not straightforward. Note
that the maximization in (5) is equivalent to the minimization of

D(M (c)||ϑΛ) := −
K∑
k=1

M∑
j=1

{
M

(c)
j,k log

(
H∑
h=1

ϑj,hΛh,k

)
−

H∑
h=1

ϑj,hΛh,k

}
. (6)
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Indeed, for (ϑ,Λ) ∈MM,H,K we have

K∑
k=1

M∑
j=1

H∑
h=1

ϑj,hΛh,k =

M∑
j=1

K∑
k=1

(ϑΛ)j,k =

M∑
j=1

1 = M

that does not depend on (ϑ,Λ). This is time to consider the popular NMF
algorithms mentioned in the introduction: indeed, the multiplicative method
proposed in [18] exactly aims at minimizing the divergence D(M (c)||ϑΛ) with
respect to matrices ϑ and Λ with nonnegative entries (without the simplex
constraint). We thus propose to iterate alternatively one multiplicative update
of [18] followed by a proper renormalization of the matrices ϑ and Λ. We end
up with the NMF-EM algorithm for mixture of multinomials summarized in
Algorithm 1 page 8.

Algorithm 1 NMF-EM

1: Fix ε > 0. Choose arbitrary ϑ(0), Λ(0) and p(0); c := 0, CRIT :=∞.
2: while |`(ϑ(c),Λ(c), p(c))− CRIT| > ε do
3: CRIT := `(ϑ(c),Λ(c), p(c)).
4: For all i ∈ {1, . . . , n} and k ∈ {1, . . . ,K},

t
(c)
i,k :=

p
(c)
k

M∏
j=1

(
H∑
h=1

ϑ
(c)
j,hΛ

(c)
h,k

)Xi,j

K∑
k′=1

p
(c)
k′

M∏
j=1

(
H∑
h=1

ϑ
(c)
j,hΛ

(c)
h,k′

)Xi,j
and p(c+1)

k =:

n∑
i=1

t
(c)
i,k

n∑
i=1

K∑
k′=1

t
(c)
i,k′

.

5: ∀j, k M
(c)
j,k =

∑n
i=1Xi,jt

(c)
i,k .

6: Initialization of ϑ and Λ (arbitrarily), q :=∞.
7: while |Q(c)(ϑ,Λ, p(c+1))− q| > ε do
8: q := Q(c)(ϑ,Λ, p(c+1)).

9: ∀h, k Λh,k ← Λh,k

∑
j ϑj,hM

(c)
j,k/(ϑΛ)j,k∑

j ϑj,h

10: ∀h, k Λh,k ← Λh,k∑
k′ Λh,k′

11: ∀j, h ϑj,h ← ϑj,h

∑
k Λh,kM

(c)
j,k/(ϑΛ)j,k∑

k Λh,k

12: ∀j, h ϑj,h ← ϑj,h∑
h′ ϑj,h′

13: end while
14: (ϑ(c+1),Λ(c+1)) := (ϑ,Λ).
15: c := c+ 1.
16: end while

2.3 Discussion on the choice of H and K

The choice of K is not a straightforward issue in mixture models. A fortiori the
choice of the pair (H,K) is not easier.

First, notice that we computed the degrees of freedom of our model, that is
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H(M − 1) +K(H − 1) +K − 1. Thus, we can derive the AIC criterion

AIC = `(ϑ̂, Λ̂, p̂|x)− H(M − 1) +K(H − 1) +K − 1

2

or the BIC criterion

BIC = `(ϑ̂, Λ̂, p̂|x)− [H(M − 1) +K(H − 1) +K − 1] log(n)

2
.

The BIC criterion is widely used to choose the number of components in mix-
tures, we refer the reader to the aforementionned paper [5] for an example of
application to transports data. However, note that conditions for the consis-
tency of AIC and BIC is understood in some models, but definitely not in
mixture models. These criterion are ad hoc in this case. Criterion more suitable
for mixtures were investigated, like NEC and variants [2]. The slope heuristic
used in [10] for mixture of multinomial gives nice results. More importantly, one
has to remind what is the objective of the statistician. One usually think of AIC
as a criterion to balance optimally bias and variance while BIC is supposed to
identify the true model, when there is one [35]. This last assumption is obviously
wrong - note that the multinomial model assumes that the different travels of
a given passenger are independent, which is obviously an approximation! We
believe that in many applications, interpretability of the results might be the
criterion of reference.

3 Application to ticketing data

3.1 Description of the data
The data used in our study are the validations made during the month of
September 2015 on one Transdev network in a medium size city. Ticketing
data are the information obtained at each transaction made by a smart card
on a validator system. For privacy reasons it is not possible to connect each
validation to the user that made it. The feature that allows us to realize our
study and create temporal profiles is a card number which is encrypted, and
re-initialized every three months. It is thus impossible to follow the long-term
behaviour of a user. This is the reason why we focus on a one month pe-
riod. This period (September) have been chosen because it has no vacation nor
bank holiday. MoÃğreover, we applied the method on data from another period
(2015, January 14th to February 28th) and results were similar. During Septem-
ber 2015, more than 4, 000, 000 check-ins have been made on the network by
232, 430 passengers. We call check-in every transaction made by an user with
his smart card. Indeed, if a traveler make a trip with with a connection, two
check-ins would be counted.

The data are agregated so that for each traveler, for each day of the week
(Monday to Sunday) and each hour (00 to 23), we have the number of validation
during the studied period. A passenger profile is thus defined by 24 ∗ 7 = 168
features. Figure 1 page 5 already provided an example of a temporal profile of
one of the users. This traveler uses mainly the network at 8 a.m and 4 p.m.

We used the same strategy to create stations profiles: for each station, for
each day of the week and each hour of the day, we know the number of validations
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that occured at this station during the study period. In Figure 2, we show the
temporal profile of the courthouse station, a tramway station in the city center.
This station has travelers all day long, but knows an attendance peak every day
from 4 to 6 p.m.

Figure 2: Temporal profile of the courthouse station

In order to avoid occasional users, that would not use enough their smart
card to exhibit a clear pattern, data have been cleaned. We define a “regular
card holder” as a card holder who

• travelled at least four days during September 2015 (so in particular we
have Ni ≥ 4);

• made his first boarding after 4 a.m each day at the same station 50% of
the time.

We only kept regular card holders for our analysis. After this cleaning step,
we end up with 72, 359 profiles of passengers, which represent a bit more than
3, 000, 000 check-ins – that means 31% of passengers represent 75% of check-ins.
We also have 475 stations profiles.

3.2 Passengers profile clustering
We first focus on passengers profiles clustering. This allows us to create groups
of people that have similar temporal habits. The method used to create these
clusters is the NMF-EM algorithm from Section 2.

To choose the parameters H and K, we begin with the analysis of the log-
likelihood of our model when H = K for K = 2 . . . 30. Note that the estimation
of the model in this case can be made by the usual EM algorithm for multinomial
mixture model. Figure 1a shows the evolution of the log-likelihood as a function
of K. This function clearly exhibits a linear behavior when K ≥ 10. Thus, the
slope heuristic suggests to consider K = 10.

Keeping now K = 10 fixed, we chose the value of H in the same way. First,
we plot the log-likelihood as a function of H in Figure 1b.Then, by using again
the slope heuristic method, we choose H = 5.
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(a) Log-likelihood as a function of K,
under H = K

(b) Log-likelihood as a function of H ∈
{2, ...,K} under K = 10

Table 1: Model selection for the french network

The H = 5 words and the K = 10 clusters are represented in Figure 3 and in
Figure 5 respectively. Remind that each cluster can be decomposed as a convex
combination of words, some of them might have a null weight. For example,
Figure 4 shows how the parameter of Cluster 5 can be written as a convex
combination of words 4 and 2.

Figure 3: Words obtained by NMF-EM on users data with K = 10 and H = 5.

The interpretation of the words is direct:

1. Word 1: travels between 6 a.m and 7 a.m.
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Figure 4: Decomposition of cluster 5 from words 4 and 2.

2. Word 2: diffuse component during off-peak periods (i.e. from 9 a.m to 4
p.m).

3. Word 3: travels at school hours. Indeed it is composed of travels between
7 and 8 a.m and between 4 and 5 p.m, except on Wednesdays, when the
afternoon travel is replaced by one at noon.

4. Word 4: travels between 8 and 9 a.m.

5. Word 5: late afternoon peak, from 5 to 7 p.m, and Wednesdays and
Saturdays afternoon.

We now attempt an interpretation of the clusters:

1. Clusters 1, 3, 4 and 6 present high travel probabilities in the morning and
in the afternoon except Wednesdays where the afternoon travel is replaced
by a higher probability of travel around noon. These four clusters are
typical of French schools and high-schools hours. The main differences
are:

(a) Cluster 1: travels at 7 a.m and around 4 or 5 p.m.
(b) Cluster 3: travel a bit more at 8 a.m.
(c) Cluster 4: travelers are less susceptible to travel after 5 p.m.
(d) Cluster 6: travels at 6 and 7 a.m.

2. Cluster 5: travels at 8 a.m and at 4 or 5 p.m.

3. Cluster 7: travels mainly at 6 a.m.

4. Cluster 9: travels at 8 a.m and at 5 p.m.

12



Figure 5: Clusters obtained by NMF-EM on users data with K = 10 and H = 5.
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5. Clusters 2, 8 and 10: diffuse travel habits.

(a) Cluster 2: travels Mondays to Saturdays from 7 a.m to 7 p.m with
highest probabilities at 8 a.m and 5 p.m Mondays to Fridays.

(b) Cluster 8: diffuse travels Mondays to Saturdays from 9 a.m to 7 p.m.

(c) Cluster 10: travels Mondays to Fridays from 9 a.m to 4 p.m.

In order to explain the small differences that exist between some cluster, we
need more informations about the travelers in them. As written above, we have
no personal information in our data. Therefore, we are not able to describe
individually the users in each cluster. However, for each transaction made, we
have the encrypted card number and the transport ticket used. So we can recover
for each card the most used transport ticket during the period. This provides
interesting information as some schemes are associated to age ranges (Young,
Senior...) and to time periods (Unit, Annual or Monthly Subscription). Let us
now provide the description of each cluster in terms of age ranges (Figures 2a
to 2c in Table 2). Note that in each figure, only two age ranges are represented
and the other four are aggregated in an "Autre" category.

(a) Adults ("Adulte") and Reduced
tickets ("DemiTarif")

(b) Kids ("Enfant") and Youngs ("Je-
une")

(c) Free travelers ("Gratuit") and El-
derly ("Senior")

Table 2: Age range analysis of the clusters

Adults are more present in clusters 7 and 9, that are clusters with check-ins
mostly in the morning. People benefiting from half-price are present in every
cluster but with highest rates in clusters 2, 3, 4 and 5. Children (4 to 6) are
not very present on the network, but they are more represented in clusters
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1, 5 and 9. Young travelers (6 to 25) are more present in clusters 1 and 4.
These clusters correspond to scholar time slot. In clusters 8 and 10 there are
large rate of seniors and free travelers. As these clusters have profiles of diffuse
travels during the week and as free travelers are unemployed or low salaries
people, these regroupments make sense.

Figure 6 shows the repartition of transport ticket type through clusters. Unit

Figure 6: Transportation ticket type analysis of the clusters.

products are more used in clusters 8 and 10 that are clusters with a lots of seniors
and free travelers. As they don’t have obligations, they likely use unit products
for occasional trips. Clusters 1, 3, 4 and 9, that have mostly scholar profiles
although have a large majority of annual subscripters. A possible interpretation
is that schoolchildren and students are public transportation captives, and have
to use the network in order to go to class every day. Thus, buying an annual
pass is more advantageous than buying any other product type.

As described in Subsection 3.1, we kept only users whose first trip of the
day is made at the same station at least 50% of the study time. That main
"morning station" is thus called the "home station" as it gives us an estimation
of the residence place of users. In Tables 8 and 9 in Appendix A, we can observe
the shares of clusters by home stations. It shows the share of travelers identified
as belonging to every cluster living near each station.

We note that:

1. Cluster 1: travelers are over represented at peripheral stations.

2. Cluster 2: no particular pattern observed.

3. Cluster 3: no particular pattern observed.

4. Cluster 4: few stations show over representation of cluster 4.

5. Cluster 5: over representation of the cluster at two stations in the north.

6. Cluster 6: no particular pattern observed.
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7. Cluster 7: One station is 100% represented by cluster 7. As only one user
is assigned to this station, no particular pattern is observed.

8. Cluster 8: the cluster is over represented at one station in the city center
and at another further.

9. Cluster 9: cluster 9 is over represented in few stations in the center.

10. Cluster 10: cluster is over represented in poorest neighborhoods of the
city.

As the previous results show no geographical discrimination for some clus-
ters, we add some contextual data to the stations. Thanks to the French Na-
tional Institute of Statistics and Economis Studies (INSEE), there are open data
permitting us to introduce more information. Firstly, a database containing so-
cioeconomic data on a grid of 200m × 200m is available. We extracted two
indicator of it: the density of population and the percentage of households liv-
ing in collective housing per tiles. Secondly, we used a database referencing and
geolocating every french company or administration, named "SIRENE base".
At last, we used two databases geolocating middle and high schools and univer-
sities and referencing the number of students in each educational establishment.
These contextual data are represented in Table 3.

We can observe in Figure 3a that density of population is high in the city
center, and decreases the further away we are. In Figure 3b, that there are more
households in collective housing in the city centers and in few neighborhood. In
Figure 3c, we observe that it is in the city center that incomes are the highest.
Even if incomes decreases away from the city center, like the population density,
highest incomes are more condensed. As for the other indicators, jobs are most
concentrated in the city center (Figure 3d).

In order to improve the description of the clusters, we created catchment
areas around the stations according to the type of vehicle (subway, tramway,
bus).Then, we were able to get an average profile of the inhabitants living in
each catchment area. Thus, it becomes possible to obtain a description of the
clusters.

In Table 4, we observe on Figure 4a that travelers from clusters 1 and 6 are
coming from neighborhoods with lower density of population. On Figure 4b, we
notice that travelers from clusters 1 and 6 are more likely to live in individual
housing on the contrary of those from clusters 2 and 5. On Figure 4c, users
from clusters 1, 4 and 6 have lower incomes, whereas travelers from clusters 2,
5 and 9 have higher incomes.

3.3 Stations profile clustering
In the case of stations clustering, it seems that results are more sensitive to the
choice of H and K than for passengers clustering. It is likely linked with the
low number of observations (475 stations profiles). Thus, we choose H and K
in term of interpretability and setted H = 3 and K = 5.

The 3 words obtained are the ones in Figure 7. The first time component is
described by check-ins at 7 and 8 a.m. We will call it the “morning component”.
The second time component shows check-ins at 4 and 5 p.m on Mondays, Tues-
days, Thursdays and Fridays and check-ins at 12 p.m on Wednesdays. We will
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(a) Density of population (b) Percentage of collective housing

(c) Winsorised incomes per inhabitant (d) Density of employees

(e) Geolocation of schools and univer-
sities

Table 3: Representation of contextual data
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(a) Density of population (b) Percentage of collective housing

(c) Winsorised incomes per inhabitant

Table 4: Contextual data through travelers clusters

Figure 7: Words obtained by NMF-EM on stations data with K = 5 and H = 3.
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name it the “end of school component”. The third component shows check-ins at
6 p.m, during Wednesdays afternoons, during Saturdays and off-peaks periods.
This component will be called the “off-peak component”.

Figure 8 shows the 5 clusters. Stations in cluster 1 are stations where there

Figure 8: Clusters obtained by NMF-EM on stations data with K = 5 and
H = 3.

are check-ins only in the morning at 7 or 8 a.m. These stations are likely in
residential areas. In cluster 2, the stations have check-ins all day long, but
with highest probabilities during peaks. Stations in cluster 3 have check-ins
in the morning and at the end of school. They are likely to be near schools in
residentials area. Stations in cluster 4 have check-ins only at end of school times.
Thus, these stations are probably near schools. Finally, stations in cluster 5 are
pretty similar than the ones in cluster 1: a large majority of check-ins are made
in the morning (7 or 8 p.m). The only difference is that it is more likely to have
check-ins during the rest of the day in cluster 5 than in cluster 1.

The figures in Table 5 show the geographical repartition of the five clusters.
In Figure 5a, we observe the stations contained in cluster 1. This cluster groups
stations that have check-ins only in the morning. On the figure, we observe
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that these stations are distant from the city center and are mainly located in
residential areas. Figure 5b shows stations of cluster 2, that have check-ins
all day long with stronger attendance during peak-periods. These stations are
mainly located in the city center. Figures 5c and 5d look alike. Indeed, clusters
3 and 4 have the "end of school" component and the points on the map are close
to educational establishment. Figure 5e shows stations from cluster 5. These
stations have check-ins all day long but most are made in the morning. By
looking at the map, we cannot notice any significant pattern.

(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5

Table 5: Map of the stations - opacity of the points are proportional to the
adequacy between the stations and the clusters.

As explain above in Section 3.2, we created catchment areas around the
stations. Thanks to these areas, we can obtain a description of the neighborhood
around each of them. Results are presented in Table 6.
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(a) Number of inhabitants (b) Percentage of households in collec-
tive housing

(c) Winsorised incomes per inhabitant (d) Number of employees

(e) Number of schoolkids

Table 6: Description of the stations clusters through contextual data

We observe in Figure 6a that stations of clusters 2 and 3 are more likely to attract
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more inhabitants around them. In Figure 6b, we note that stations in clusters 2
and 3 are located in areas with more collective housing, whereas clusters 1 and 4
are in areas with more individual housing. We notice in Figure 6c that stations
in cluster 2 have more variability in the incomes of their neighborhoods. Cluster
1 is the cluster with the lowest incomes around its stations. In Figures 6d, we
observe that stations from cluster 2 are more located in activity areas than the
others. Finally, we notice in Figure 6e that stations from clusters 3 and 4, as
seen on figures 5c and 5d, are catching lot of schoolkids (11 to 18 years old)
since they are located near middle and highschools.

To conclude, we can say that stations from cluster 1 are located in peripheral,
where there are few inhabitants, housing are mostly individual and incomes are
low. Stations from cluster 2 are mostly located in the city center where the
population is high, have high incomes and lives in collective housing and where
companies are numerous. Stations from clusters 3 and 4 are located near middle
and high schools. However, stations from cluster 3 are most located in rich
collective housing areas than stations from cluster 4. As cluster 5 contains 45%
of the stations, the indicators are on average.

3.4 Passengers profile clustering on another network
Since customs and habits are different from one country to another, we applied
the NMF-EM algorithm on another Transdev network located in the Nether-
lands. Validation data used are the ones from November 2015, because it is
one of the months with the most typical behaviours on the network. During
this month, 1, 743, 574 check-ins have been made by 200, 429 travelers. For the
same reasons as those mentionned above, we kept only the users who have been
travelling on the network minimum 4 days during the study period and who
have made their first boarding after 4 a.m each day at the same station at least
50% of the time. We ended up with 55, 149 regular card holders, that made
1, 245, 011 check-ins.

By using the same model selection method as in Section 3.2 (i.e. slope
heuristic), we obtained the optimal values of K = 10 and H = 7 (cf. Figures 7a
and 7b in Table 7).Corresponding words and clusters are contained respectively
in Figures 9 and 10.

The interpretation of the words is:

1. Word 1: travels at 6 or 7 a.m and slightly around 4 p.m during the week.

2. Word 2: travels during the week-end.

3. Word 3: diffuse travel habits from 8 a.m to 4 p.m Mondays to Fridays.

4. Word 4: travels at 7a.m on weekdays.

5. Word 5: diffuse habits with highest probabilities from 5 p.m to 12 a.m
during the week.

6. Word 6: diffuse habits from 9 a.m to 5 p.m with highest probability at 1
p.m Mondays to Saturdays.
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(a) Log-likelihood as a function of K,
under H = K

(b) Log-likelihood as a function of H ∈
{2, ...,K} under K = 10

Table 7: Model selection for the dutch network

Figure 9: Words obtained by NMF-EM on users data with K = 10 and H = 7.
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Figure 10: Clusters obtained by NMF-EM on users data with K = 10 and
H = 7.
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7. Word 7: travels at 8 a.m and 5 p.m.

We can interpret the cluster as follows:

1. Cluster 1: diffuse habits from 9 a.m to 5 p.m with highest probability at
1 p.m Mondays to Saturdays.

2. Cluster 2: travels at 6 or 7 a.m and at 4 or 5 p.m during the week.

3. Cluster 3: diffuse habits from 7 a.m to 6 p.m on weekdays.

4. Cluster 4: diffuse travel habits from 9 a.m to 11 p.m.

5. Cluster 5: travels at 7 or 8 a.m diffuse habits during the afternoon.

6. Cluster 6: travels at 8 a.m and 5 p.m.

7. Cluster 7: diffuse travel habits from 7 a.m to 5 p.m Mondays to Fridays.

8. Cluster 8: diffuse habits from 8 a.m to 4 p.m during the week.

9. Cluster 9: travels during the week-end.

10. Cluster 10: travels at 7 or 8 a.m and around 4 p.m.

As for the french network, the NMF-EM algorithm allowed to identify group
of travelers that have similar temporal habits within them but very distinct
between them.

4 Conclusion
In this paper, using smart card data allowed us to obtain a new method to cluster
passengers. In addition to highlighting typical temporal profiles, we insisted on
temporal components that enable more precise knowledge on travelers temporal
habits.

Secondly, we used data contained in the product used to get a description
of the travelers. Indeed, the age ranges and ticket type added informations
on proifiles, such that their type of activities (unemployed, students, retired,
working population,...).

Finally, adding socioeconomic data finished to draw a portrait of typical
users. Especially by using data on home neighbourhood, like the number of
employees or type of housing.

Without any personnal data, couple smart card and socioeconomic data
permits to obtain rich sources of information on typical profiles from network
users. This could allow networks to have a better customer knowledge, and
adapt their price offer to the profiles described.

In Netherlands, not only check-ins, but although check-outs are recorded.
The NMF-EM algorithm could be therefore applied to the number of minutes
spent in a public transport system by time slot.
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(a) Cluster 1 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6

Table 8: Share of clusters per home station - Clusters 1 to 6
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(a) Cluster 7 (b) Cluster 8

(c) Cluster 9 (d) Cluster 10

Table 9: Share of clusters per home station - Clusters 7 to 10
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