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Abstract

The energy transition requires the deployment of significant pro-
grams in research and development. In absence of a long term com-
mitment by governments on an international price of carbon various
forms of national subsidies have been used. This paper analyzes the
potential benefit of using subsidies conditional on success or failure of
an R&D program, rather than a flat subsidy. The relationship between
the state and the firm is formalized in the principal agent framework.
Three potential sources of inefficiency are identified: conditions of ob-
servability of the outcome of the project, adverse selection regarding
the probability of success and moral hazard. We shall show how sub-
sidies that reward failure and subsidies that reward success mitigate
these respective sources of inefficiency in a superior way as compared
to flat subsidies. The gap between our second best policies and the
first best is also identified. We bring together our analytical results and
offer some guidance for the design of contractual investment programs
such as the contractual instruments used in the Investment Program
for the Future (Programme d’Investissements d’Avenir) launched in
France in 2010 to promote R&D for the energy transition over the
period 2010-2020.
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1 Introduction
The energy transition requires the deployment of significant programs in
research and development. The success of these programs remains largely
uncertain and will only be seen in tens of years. The cost benefit analysis
at that horizon need combining private and social benefits. Various policies
involving different forms of subsidies have been used to promote such pro-
grams. These second best policies can be justified by the absence of a (very)
long-term commitment by governments on an international price of carbon
to internalize the climate externality, and possibly by other externalities such
as spill-overs and learning-by-doing.

However the policies actually implemented typically exhibit some ad hoc
features. The gray literature has emphasized a number of pitfalls. For in-
stance the allocation of subsidies in the Clean Development Mechanisms is
based on a counter-factual that defines baseline emissions.1 This opens the
room for financing projects that would have been deployed anyway (Gillen-
water and Seres; 2011; Greiner and Michaelowa; 2003). Another example
concerns the promotion of renewable energy such as solar. Governments have
been late in recognizing the decline in costs so that many projects also bene-
fited from windfall profits (Brown; 2013). The REDD program has also been
critically examined in this respect (Pirard; 2008).2 More recently, in order to
finance the energetic transition under tight governmental budget constraint,
Aglietta et al. (2015) have proposed a scheme based on government-backed
loans that otherwise would not satisfy the regulatory rules imposed on the
financial capital market, again opening the room for windfall profits.

This paper formalizes such situations using the principal agent framework
(Laffont and Martimort; 2002), the principal being the agency acting on
behalf of the state and the agent being the firm which carries over the project.
The firm invest in a project that may succeed or failed, the probability of
success depends upon the type of the project and the effort of the firm.
The type is known by the firm but not by the agency and the effort is non

1The Clean Development Mechanism is a flexible mechanism in the Kyoto protocol,
that allows covered (Annex I) countries to satisfy part of their abatement objective by
investing in low-carbon projects (e.g. renewable electricity) in uncovered (non-Annex I)
countries.

2The REDD (Reducing Emissions from Deforestation and Forest Degradation), or
REDD+, program allows to monitor and evaluate mitigation benefits from forest con-
servation in developing countries.
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contractible. The agency can propose a couple of non-negative subsidies in
case of success or failure.

We investigate the benefits of various forms of subsidies under asymmetric
information. Our framework allows to consider three sources of inefficiency.
The first one concerns observability conditions: we shall allow various condi-
tions for the observability of the success or failure of the project. The second
source concerns the presence of adverse selection: uncertainty on the success
may arise from a technical risk about which the firm may be much better
informed than the agency. Finally we introduce the possibility of manage-
rial risks: the firm may have some private interest for investment which are
not relevant for the agency such as spill overs for other R&D projects. This
would create an opportunity for moral hazard.

From a welfare point of view one needs to balance a selection bias (induce
investments in projects in as much as they are socially valuable) with a risk for
windfall profits (allocate funds to projects that would have been undertaken
anyway) while at the same time getting the highest possible benefit for the
funds allocated by the agency. We show how flat subsidies, subsidies that
reward failure and subsidies that reward success may be used to mitigate
these respective sources of inefficiency. Indeed we identify benchmark models
which clarify under what circumstances rewarding failure or success appear
as a good incentive instrument. The first type of instrument will appear more
suitable when adverse selection prevails, while the second type of instruments
will be more profitable when moral hazard prevails. The gap associated with
these second best instruments relative to the first best will alos be identified.

This paper has been indirectly motivated by the program monitored in
France by the state agency ADEME known as the Investment Program for
the Future (“Programme d’Investissements d’Avenir” to be denoted as PIA).3
The PIA was launched in 2010 for a period of 10 years. Yearly ADEME opens
calls for projects on some predefined areas. Each project is examined on its
own merit, a selection is made. Then ADEME proposes a contract to each
eligible project and the firm accepts or rejects the contract. Over 2010-
2015 ADEME has financed more than 250 projects in various areas such as
renewable energy, zero emission vehicles, green chemistry, etc. Initially the
funds were allocated through flat subsidies. As from 2012 the contractual
arrangements evolved to incorporate repayable advances: part of the funds
allocated to a project would be paid back in case of success.

3http://www.ademe.fr/en/investments-for-the-future
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In the concluding part of the paper we shall bring our analytical results
together and suggest some guidance for the design of contractual schemes
such as PIA.

Litterature review TBC
Several articles deal with the issue of financing green project under asym-

metric information. Fischer (2005) provides an insightful analysis of CDM
design. In her article the asymmetry of information between the agency that
designs the contract and the firm which deploys the project plays a major
role. It explains the potentially large windfall profit which may occur.

From a more theoretical perspective, our analyzes lies at the intersec-
tion of several strands of the literature: optimal second best taxation with
externalities, and mechanism design with both adverse selection and moral
hazard.4 From this perspective, our model features both adverse selection
and moral hazard, with a risk-neutral principal and a risk neutral agent, and
constrained incentive schemes. The principal (the agency) is constrained to
propose a single couple of non-negative subsidies. Indeed, a key difference
between our analyze and the mechanism design literature is that we do not
study the optimal menu offered by the principal, but mostly restrict our
attention to a single couple of subsidy. We still compare numerically the
optimal simple scheme with an optimal unconstrained menu.

Lewis and Sappington (2000a,b) considered mixed models with wealth
constrained agents (see Quérou et al.; 2015, for a recent contribution). Laf-
font (1995) and Hiriart et al. (2004) analyze the regulation of environmental
risk under limited liability. Interestingly, the optimal design of students loan
studied by Gary-Bobo and Trannoy (2015) exhibits some features similar to
our results: the students are ask to reimburse their loans in case of success
but not failure.5

Ollier and Thomas (2013) introduces ex-post participation constraint (the
firm should recover its cost even if the project fails) in a mixed model rel-
atively similar to ours.6 They notably show that because of countervailing
incentives pooling is optimal and the principal should only reward success.
Which is the case in our setting when moral hazard issues dominate, that is,
when one type is much more probable than the other. Otherwise, with the

4Mixed models are covered in chapter 7 in Laffont and Martimort (2002).
5The model of Gary-Bobo and Trannoy (2015) also introduce risk aversion so that an

insurance motive is added to the efficiency-rent extraction trade-off.
6In subsection 5.2. they replace the ex-post participation constraint by a limited lia-

bility constraint, making their model closer to ours.
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present model thee are situations in which both subsidies are used or only a
reward in case of failure. The key difference is the absence of a fixed cost in
Ollier and Thomas (2013) which limits adverse selection issues: there is no
need to finance low profitability projects but only motivate efforts.

The literature on optimal taxation and externalities (Sandmo; 1975; Boven-
berg and de Mooij; 1994; Cremer et al.; 1998; Cremer and Gahvari; 2001)
considers modified Pigouvian rules in second best setting, whether à la
Ramsey or Mirrless. Depending on the instruments available and constraints
considered (notably on the shape of the income tax) the optimal tax differs
from the Pigouvian one. The fact that in our setting the optimal scheme
does not consist in setting a reward equal to the marginal positive exter-
nality could be interpreted as the result of a second best situation in which
public funds are costly and taxation incomplete, the profit of the successful
firm cannot be taxed because of the constrained on the instruments.

The rest of the paper is organized as follows: in Section 2 we consider
two benchmark models of adverse selection and moral hazard. In Section 3,
we consider a situation in which both phenomenon are at play. In Section 4,
hind-sights are discussed through illustrative examples. Section 5 concludes.

2 Benchmark models
Consider the following situation. A given project may or may not be deployed
by a firm (the agent). Such a project is characterized by: (i) a fixed cost F ,
(ii) a probability of success p and a probability of failure 1− p, (iii) a private
revenue R and an external benefit b in case of success and neither private
revenue nor external benefit in case of failure. If a project is not deployed
the reference payoffs are zero and no fixed cost is incurred.

The regulatory agency (the principal, denoted henceforth as the agency)
has selected this project and knows its characteristics F , R and b. What it
knows about p will be specified in each of the following subsections. For each
selected project it can propose a subsidy according to some constraints to be
defined shortly. The subsidy is a take or leave it.

The firm seeks to maximize its private return: knowing the incentive
scheme it decides to accept it or not and then to deploy or not the project.
The regulatory agency seeks to maximize the external benefit at the minimal
cost. The agency observes whether the project is or is not deployed, if it is
a success or a failure as well as the associated private revenue and external

5



benefit.
The subsidy, if any, may only depend on the outcome of a project, i.e.

whether it is a success or a failure. The subsidy is s1 in case of success and s2
in case of failure. It is equivalent to a scheme by which the agency lends an
amount s and asks for a reimbursement s1−s in case of success and s2−s in
case of failure. We shall refer to SSB = R+ × R+ as the constrained class of
(incentive) schemes (s1, s2), this defines our second best approach. S = R×R
refers to the unconstrained class of schemes. For the sake of comparison we
shall also identify the first best solution and clarify whether or not the non
negativity constraints are the limiting factors in not obtaining the first best.

2.1 Rewarding failure: adverse selection

In this section we assume that the agency does not know the ex-ante proba-
bility of success p of a given project. This probability of success is distributed
according to a continuous density function g(p), and a cumulative distribu-
tion G(p) with G′(p) = g(p), defined for p ∈ [0, 1].

The incentive scheme operates a selection under asymmetric information
in which p is the type of the firm. We will show that the first best is achieved
for schemes in S, there is no need to introduce a menu of contracts. The
optimal second best scheme consists in rewarding failure and it does not get
the first best.

The profit of a firm of type p if it deploys its project is

π(p, s1, s2) = p(R + s1) + (1− p)s2 − F (1)

And the expected profit is:

Π(s1, s2) =

∫ 1

0

max{π(p, s1, s2), 0}dG(p) (2)

Define ΠBAU = Π(0, 0) =
∫ 1

0
max{(pR−F, 0}dG(p) as the expected business

as usual profit. We introduce the following assumption.

Assumption 1 Some projects are profitable without subsidies: ΠBAU > 0.

Given a scheme (s1, s2) there is a threshold type p̃ at which expected
profit is null π(p̃, s1, s2) = 0:

p̃(s1, s2) =
F − s2

R + s1 − s2
(3)

6



If R + s1 > s2, as will be the case at relevant schemes, then success is more
profitable than failure and all p ≥ p̃ will be deployed.

The agency seeks to maximize the external benefit net of the subsidy that
is:

V (s1, s2) =

∫ 1

p̃(s1,s2)

[p(b− s1)− (1− p)s2]dG(p) (4)

Welfare is defined as the sum of the surplus of the agency (the external
benefit minus the subsidy) plus the expected profit of the firm (private benefit
plus subsidy minus cost). It can be written as a function of the threshold
probability :

W (p̃) = V +

∫ 1

0

max{π(p, s1, s2), 0}dG(p) =

∫ 1

p̃

[p(R + b)− F ]dG(p). (5)

Let us define pFB the threshold type that maximizes welfare it is

pFB =
F

R + b
, (6)

Let W FB stands for this maximum. Define pBAU as the threshold type with-
out any subsidy:

pBAU = p̃(0, 0) =
F

R
(7)

It is illuminating to decompose the problem of the agency in two steps.
Step 1, given a targeted threshold probability pt the agency minimizes

the expected cost of the subsidy:

C(pt) = min
s1,s2

∫ 1

pt
max{ps1 + (1− p)s2, 0}dG(p), s.t. p̃(s1, s2) = pt.

If subsidy can be negative, then firms might be better off investing without
subscribing to the scheme, and they do so if the expected subsidy is negative.
This possibility explains the maximum function in the integrand. Indeed,
if the subsidies are constrained to be non negative then an investing firm
subscribes to the scheme. This gives the following lemma.

Step 2, the optimal choice of pt maximizes V = b
∫ 1

pt
pg(p)dp−C(pt). This

gives the proposition that follows.
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Lemma 1 Whatever the targeted threshold type pt, the scheme that mini-
mizes the expected cost of the subsidy is:

• For the class S, s2 = F and s1 = F − R + ε with ε infinitely small.
Then, the profits of firms that subscribe to the subsidy is null and the
surplus of the agency is equal to first best welfare minus the BAU profit:
W FB − Π(0, 0).

• For the class SSB, s1 = 0 and s2 = (F − ptR)/(1 − pt). The profit of
a firm of type p ∈ (pt, 1] is positive, and the agency surplus lower than
the first best welfare.

Proof.
Consider a change of the subsidy couple that keeps pt unchanged: ptds1+

(1− pt)ds2 = 0. For p > pt the effect of this change on the expected subsidy
received by the firm of type p is: pds1 + (1 − p)ds2 = (p − pt)(ds1 − ds2)
which is negative if ds2 > 0. Therefore, to reduce C(pt) the agency should
increase s2 and reduce s1.

Subsidies
($)

Proba p

s1

s2

F − ptR

pt 1

C
•

Figure 1: Expected subsidy as a function of the firm type: the red area is
equal to the total expected subsidy (weighted by g(p)).

The result of Lemma 1 is illustrated Figure 1. Given a couple s1, s2 the
red area corresponds to the total expected subsidy, the dashed line depicts
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a change of the subsidy line associated to an increase of s2 and a reduc-
tion of s1 that leaves the threshold firm unchanged. As can be seen such a
change reduces the total expected subsidy by reducing the expected subsidy
obtained by high type firms. High type firms succeed more frequently than
the threshold type, they get more frequently the subsidy in case of success,
and less frequently the subsidy in case of failure, the expected subsidy is
then reduced by rewarding more failure and less success. At the extreme it
is optimal to reward only failure in order to limit windfall profit.

We shall now show that without positivity constraints the optimal value
of pt is pFB and the first best is achieved, while pFB ≤ pt ≤ pBAU with
constraints. Let us denote pSB the optimal value of pt(s1, s2) in the second
best approach. Indeed the following proposition holds:

Proposition 1 At the optimal scheme

• For the class S, the optimal scheme is such that pt = pFB and the first
best is achieved. The profit of firms that subscribe to the scheme is null,
and the agency surplus is equal to W FB.

• For the class SSB, the first best is not achieved, the optimal scheme
rewards failure only with s1 = 0 and s2 ≥ 0 is such that:

(i) s2 = 0 and pSB = pBAU if

b ≤ R3

F (R− F )

∫ 1

F/R

(1− p)g(p)dp (8)

(ii) otherwise s2 > 0 and pFB ≤ pSB ≤ pBAU with pSB defined by the
following implicit equation:

pSB = pFB +
1

g(pSB)

R− F
b+R

∫ 1

pSB

1− p
(1− pSB)2

dG (9)

Proof. The threshold probability as a function of s2 is p̃(0, s2), the
derivative of welfare is:

− [p̃b− (1− p̃)s2]g(p̃)
∂p̃

∂s2
−
∫ 1

p̃

(1− p)g(p)dp (10)
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the first term is the benefit from the marginal project, the second term is
the increased subsidy to all more profitable projects. the derivative of the
threshold probability is

∂p̃

∂s2
=

1− p̃
R− s2

=
(1− p̃)2

R− F

the derivative of welfare could then be rewritten:

[p̃(R + b)− F ]g(p̃)
(1− p̃)2

R− F
−
∫ 1

p̃

(1− p)g(p)dp (11)

At s2 = 0 p̃ = F/R, and the derivative of welfare is negative if

[F (R + b)− FR]g(F/R)
1

R

(1− F/R)2

R− F
≤
∫ 1

p̃

(1− p)g(p)dp

point (i) follows. Otherwise, the optimal subsidy cancels the derivative of
welfare and point (ii) describes the first order condition.

The proposition may be interpreted as follows. Consider an incentive
scheme and assume that pFB ≤ p̃ ≤ pBAU . On the one hand projects of type
p such that pFB ≤ p ≤ p̃ will not be implemented while they should from
a first best point of view. This generates a relative loss, to be denoted as a
selection bias: W FB−W (p̃). On the other hand projects of type p such that
p̃ < p ≤ 1 will be implemented but with a windfall profit, which is a second
loss for the regulator: Π(s1, s2)− ΠBAU . This gives the following result.

Corollary 2 The optimal second best solution minimizes the sum of the se-
lection bias and the windfall profit.

V (s1, s2) = W FB − ΠBAU −
[
W FB −W (p̃)︸ ︷︷ ︸

selection bias

+ Π(s1, s2)− ΠBAU︸ ︷︷ ︸
windfall profits

]

Note that if Assumption 1 is not satisfied, i.e. ΠBAU < 0, the optimal
scheme in S is non negative. The first best is achieved in SSB.

It is relatively straightforward to establish that a menu of subsidies cannot
improve the situation whenever Assumption 1 holds. Whatever the initial
subsidy couple proposed (s1, s2), there is no room for maneuver: the agency
cannot propose another couple (s′1, s

′
2) that would be both more interesting to
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a firm of type p > p̃(s1, s2) and less costly to the agency. The first condition
being equivalent to ps′1 + (1 − p)s′2 > ps1 + (1 − p)s2 and the second to
ps′1 +(1−p)s′2 < ps1 +(1−p)s2. Note that the above reasoning does not rest
on the positivity constraints but on the risk neutrality of the principal and
the agent, or the absence of moral hazard, which is analyzed in the following
two sections.

Let us now consider as a direct extension a situation in which the agency
observes with some noise whether the project is successful or not. The agency
can only condition the subsidy on the observed signal, s1 if it observes a
success and s2 if it observes a failure. Let α1 be the probability of observing
a signal of failure if the project is a success and α2 the probability of observing
a signal of failure if the project fails. We assume that α2 ≥ α1, a perfect
signal corresponds to α2 = 1 and α1 = 0 and an uninformative signal to
α2 = α1. The subsidy obtained by a firm is α1s2 + (1 − α1)s1 in case of
success and α2s2 + (1 − α2)s1 in case of failure. The threshold project is
then:

p̃(α1s2 + (1− α1)s1, α2s2 + (1− α2)s1),

and the expected total subsidy is∫ 1

p̃

{
p
[
(1− α1)s1 + α1s2

]
+ (1− p)

[
(1− α2)s1 + α2s2

]}
dG(p)

Corollary 3 If the success and failure of a project are not perfectly observ-
able,

• For the class S: the first best is achieved.

• For the class SSB: The optimal scheme remains of the form s1 = 0
and s2 > 0. The second best threshold type, the expected subsidy, the
agency surplus, the welfare and the profit of firms only depend on the
ratio α1/α2.

– If α1 = 0 (success is perfectly observed), then, whatever α2, at the
optimal second best scheme, the threshold probability, welfare and
α2s2 do not depend on α2 and correspond to perfect observability
situation.

– Otherwise, with a homogeneous distribution, the threshold proba-
bility is higher, and, welfare and the agency surplus are lower than
in the case with a perfect signal.
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Proof. see Appendix A
Technically the agency would like to subsidize failure and not success,

whether a failure is not properly identified (α2 < 1) is not an issue since
it can play with s2 to increase the expected subsidy in case of failure. The
agency is mainly concerned by the noise in case of success, α1 > 0. The ratio
α1/α2 is the number of $ awarded to successful projects for any $ awarded for
failed projects, this ratio determines the inefficiency of the subsidy scheme
with noise.

Two comments are in order. Firstly, an imperfect signal may originate
from a manipulation of the agent. The mere possibility of such a manipula-
tion deteriorates the efficiency of the incentive scheme. Secondly, in case of
an uninformative signal, the optimal scheme is equivalent to a flat subsidy
s1 = s2 since the subsidy will be given independently of the signal received.

2.2 Rewarding success: moral hazard

In this section we introduce moral hazard. The probability of success is a
function of an effort e and the type θ of a project, p(e, θ). The cost of effort
is a function of e and θ, it is denoted f(e, θ). The type of the firm θ is known
by the agency, but neither the effort nor its cost are observable by the agency.
We shall show that without the non negativity constraints the first best is
achieved. With the non negativity constraints rewarding success only is the
second best solution, however the first best is not achieved.

We use the following specification:

p(e, θ) = θ + e(1− θ) (12)

and

f(e, θ) = (1− θ)γ
2
e2 (13)

The probability of success p(e, θ) is a clockwise rotation of the initial
probability p(0, θ) around the point (θ = 1, p = 1).7 This specification is

7This specification has the following appealing properties: Without any effort the prob-
ability of success is equal to the type (contrary to Lewis and Sappington; 2000b) which will
ease the comparison with the pure adverse selection model studied above. It is less costly
for a good project to ensure success by setting e = 1, which seems realistic. The constraint
p ≤ 1 turns into e ≤ 1 which is independent of the type. Furthermore, this specification
has the nice tractability property that the level of effort will not depend on the type.
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meaningful as long as e ≤ 1 which implies some restrictions on our parameters
γ,R, b to be made precise shortly.

For a scheme (s1, s2) we get the agency surplus:

v(θ, e, s1, s2) = p(e, θ)(b− s1)− (1− p(e, θ))s2 (14)

the profit of the firm:

π(θ, e, s1, s2) = p(e, θ)[R + s1 − s2] + s2 − [F + f(e, θ)] (15)

and the welfare:

w(θ, e) = p(e, θ)[R + b]− (F + f(e, θ)) (16)

The effort that maximizes welfare is:

eFB = min
R + b

γ
, 1 (17)

Note that the effort which maximizes the profit for a given couple of subsidies
depends only on (s1 − s2)

e(s1, s2) =
R + s1 − s2

γ
, (18)

which indeed corresponds to the effort actually performed by a firm if the
above expression is between 0 and 1. Note that eBAU = e(0, 0) = R/γ so
that eBAU ≤ eFB.

We can now derive θBAU and θFB that give the respective thresholds for
a firm to deploy the project without subsidy and for a first best deployment.
It is easily seen that:

θBAU =
1

R

2Fγ −R2

2γ −R
(19)

θFB = max
{ 1

R + b

2Fγ − (R + b)2

2γ − (R + b)
, 0
}

(20)

The above analysis suggests to calibrate the parameters as follows:

Other cost functions can capture that less effort is optimal as the initial probability of
success increases, which would have cumbersome consequences.
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Assumption 4 The first best effort is less than 1: γ > R + b.

Assumption 5 R2 ≤ 2Fγ and F ≤ R so that 0 ≤ θBAU ≤ 1.

Note that θFB ≥ 0 if and only if (R + b)2 ≤ 2Fγ. As b increases θFB

decreases from θBAU to 0. BAU is such that for θ ≤ θBAU the firm does not
deploy the project, and for θBAU < θ ≤ 1, it deploys the project and makes
the effort eBAU .

We now describe the optimal second best scheme (s1, s2) ∈ SSB as a
function of the type θ of the project. The agency should decide whether to
ensure the deployment of a project for θ ≤ θBAU , and whether to further
motivate effort. Firstly, if the agency ensures the deployment of a project
it is optimal to do so by rewarding success and not failure i.e. s1 > 0
and s2 = 0 since it maximizes the effort of the firm. Secondly, if the agency
subsidizes a project it has to decide whether to solely ensure the deployment,
leaving no rent to the firm, or further subsidizing success to increase the firm’s
effort. The occurrence of these two possibilities depends on the value of the
parameters b, γ, R and F .

For small values of the external benefit b, we have θFB ≥ 0 and the
agency does not subsidize the firm as long as θ ≤ θFB. For a higher type θ,
the agency subsidizes the project and calibrates the subsidy so that the firm’s
profit is null. For larger values of b, the agency might let a windfall profit to
the firm to achieve a high probability of success. The following proposition
makes this precise and proves that there will be a windfall profit as soon as
R + b ≥ 2

√
2Fγ.

Define:
s1A(θ) =

b−R
2
− γ θ

1− θ
(21)

and

s1B(θ) = γ
θ

1− θ

[√
1 +

2F

γ

1− θ
θ2
− 1

]
−R (22)

Proposition 2 At the optimal second best scheme (s∗1, s
∗
2) in SSB, the sub-

sidy in case of failure is null: s∗2 = 0. The precise expression of the subsidy
in case of success s∗1(θ) depends on the two following cases:
Case 1: If R + b ≤ 2

√
2Fγ then

- if θ ≤ θFB the optimal subsidy is null, the project is not implemented;
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- if θFB ≤ θ < θBAU the optimal subsidy is s1B(θ), the project is imple-
mented and the firm gets no windfall profit;

- and if θ ≥ θBAU the optimal subsidy is null, it is business as usual, the
project is implemented and the firm gets no windfall profit.

Case 2: if R + b ≥ 2
√

2Fγ there is a threshold θA such that:
- if θ ≤ θA the optimal subsidy is s1A(θ), the project is implemented and

the firm gets a windfall profit;
- if θA ≤ θ < θBAU the optimal subsidy is s1B(θ), the project is imple-

mented and the firm gets no windfall profit;
- and if θ ≥ max{θA, θBAU} the optimal subsidy is null, it is business as

usual, the project is implemented and the firm gets no windfall profit;

Proof in Appendix B
The precise expressions of θA cannot be determined explicitly, it is the

type at which the expression s1A is either equal to s1B or null. Above this
type θA, it is not worth conceding a rent to the firm in order to increase
effort. Depending on the value of b this threshold is either larger or lower
than θBAU .

With an unconstrained scheme, the agency implements the first best,
welfare is then equal to w(θ, eFB), and the firm gets its BAU profit. The
proof of this lemma is straightforward.

Lemma 2 The first best is obtained with a scheme in S such that:
- if θ ≤ θFB, no subsidy is proposed and the project is not deployed,
- if θ ≥ θFB, the optimal scheme is such that s1− s2 = b and s2 such that

π = πBAU .
Welfare is then w = p(e, θ)(b − (s1 − s2)) − s2 = −s2, the subsidy s2 is

negative and corresponds to a tax on profit.

3 The general model with adverse selection and
moral hazard

We now investigate the more general case in which the firm can make an effort
and knows its type θ but the agency does not. We keep the same specification
for the effort and the cost. We have two questions in mind. Firstly since
there is some contradiction between rewarding success and rewarding failure
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we wonder whether there are situations in which both subsidies could be
strictly positive. Secondly we want to know whether the introduction of a
menu of contracts is necessary and sufficient to achieve the first best.

The fully general model with a continuum of type proved difficult to solve.
So, we consider only two types: θL and θH with θL < θH . The probability of
type θH is denoted λ. We analyze the influence of the distribution of types.
We shall show that there is a range for λ for which both subsidies are strictly
positive while for lower λ rewarding success prevails and for high λ rewarding
failure prevails. We also show that there are two potential benefits to using
a menu in S, i.e. inducing different effort levels depending on the type of
the firm and taxing profits. Still the optimal menu leaves a gap as compared
with the first best: asymmetry of information generates some inefficiency
independently of constraints on the incentive schemes.

The following assumption is introduced to get the results.

Assumption 6 We take (R+ b) < 2
√

2Fγ and θL and θH such that θFB <
θL < θBAU and θBAU < θH .

To get intuition on the structure of the optimal second best scheme start
with a situation in which the cost of effort (γ) is very high. We have an
adverse selection situation in which for low values of λ it is worthwhile to
induce a low type firm to deploy the project through rewarding failure (and
make no profit) at the expense of allowing a rent to a high type firm. For
a high enough value of λ the agency should not give any subsidy, the high
type firm uses its BAU strategy while a low type firm does not deploy. As γ
decreases, for low values of λ, it may become worthwhile to induce a low type
firm to make an effort through rewarding success, the incremental rent for
high type firm being more than compensated. How do these two situations
of rewarding success and rewarding failure combine together? As λ increases
the balance between the benefit accruing from a higher effort from a low type
firm should exactly balance the increase in the rent of the high type firm.
The following lemma precisely defines the relationship between s1 and s2 for
these intermediary situation.

Lemma 3 At the optimal scheme (s∗1, s
∗
2) in SSB, if both subsidies are strictly

positive then they satisfy:

s∗1 − s∗2 = b− γλ(θH − θL)

(1− θL)− 2λ(θH − θL)
(1− eFB) (23)
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and s∗2 is such that the profit of the low type firms is null, it solves:

s∗2 = F − θL(R + (s∗1 − s∗2))− (1− θL)
(R + (s∗1 − s∗2))2

2γ
(24)

The proof is in Appendix C.
We now characterize the optimal second best scheme for all values of λ.

Proposition 3 The optimal scheme s∗1, s∗2 in SSB depends on three thresh-
olds λ1, λ2 and λ3 as follows:
− for 0 < λ ≤ λ1 : s∗1 > 0 and s∗2 = 0; s∗1 = s1B(θL) given by equation (22)
− for λ1 < λ < λ2 : s∗1 > 0 and s∗2 > 0 given by Lemma 3 ;

− for λ2 < λ < λ3 : s∗1 = 0 and s∗2 > 0 such that π(θL, e, 0, s
∗
2) = 0 :

s∗2 = R− γ + γ

[
1− 2

γ

R− F
1− θL

]1/2
− for λ3 < λ ≤ 1 : s∗1 = 0 and s∗2 = 0.

The profit of a L firm is always null, a H firm gets a windfall profit as
long as λ < λ3.

When λ is low, Proposition 2 is approximately true and a low type firm
receives a subsidy in case of success and no rent. This subsidy both promotes
deployment and effort by a low type firm. As λ increases, an growing part of
the expected subsidy is diverted by a high type H firm through a rent. The
agency then progressively shifts the subsidy from success to failure to reduce
the expected cost of the subsidy, it comes at the expense of a reduced effort
for both types. At some point only failure is subsidized, the effort is then
low but the informational rent minimized. For a very large λ, no subsidy for
failure is provided, and only a high type deploys the project. This structure
of the incentive scheme illustrates how the two conflicting goals of rewarding
success and rewarding failure interact as a function of λ.

We now show that even with no constraints and a menu of contracts the
agency cannot implement the first best. because of both the non-negativity
constraint on subsidies and asymmetric information. The optimal scheme
with asymmetric information and unconstrained subsidy is a relatively stan-
dard mechanism design problem: the agency (the principal) should propose
a menu of couples {(s1L, s2L), (s1H , s2H)} to the firm which self selects. The
menu is designed so that a type i = L,H chooses the item (s1i, s2i). Several
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cases can arise whether only a high type or both types deploy their project,
and whether a low type exerts an effort.

For the sake of simplicity, and to focus on the role of asymmetric infor-
mation, contrary to previous sections we assume that the agency can capture
the rent from a high type.8

Assumption 7 A firm cannot deploy a project without the consent of the
agency.

Furthermore, we assume that a low type project is worth implementing,
from a welfare perspective, even without effort. This assumption is satisfied
in our numerical illustration. With this assumption it is always beneficial to
encourage the low type firm to invest.

Assumption 8 The low type is such that θL(R + b)− F > 0.

With these two additional assumptions only two situations can arise. In both
situations a low type project is deployed with a sub-optimal effort, possibly
null, and a high type exerts an optimal effort. In one case a high type gets
a rent and the low type exerts an effort; in the other case, a high type gets
no rent and a low type exerts no effort.

Proposition 4 If the agency can propose a menu {(s1L, s2L), (s1H , s2H)} ∈
S2, under Assumptions 7 and 8, there is a threshold λmenu that delineates
two cases.

In both cases, the high type exerts the first best effort: s1H − s2H = b, and
the low type gets a null profit. Furthermore:

• For λ > λmenu:

- The low type exerts no effort: s1L − s2L = −R
- Both the low and high type gets no profit: s2L = F and

s2H = F − θH(R + b)− (1− θH)
(R + b)2

2γ
< 0

8Without this assumption, the high type would compare its profit with (s1H , s2H) with
both its profit with (s1L, s2L) and its BAU profit. The menu would then have to satisfy
the self selection constraint and this new participation constraint. The high type would
still be incentivize to make the first best effort (s1H − s2H = b), but it would get at least
its BAU profit. The scheme offered to a low type would be more attractive than BAU for
a high type for a low probability of a high type, but not for a sufficiently large probability
of a high type. In that case, the situation would be close to Lemma 2.
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• For λ < λmenu:

- The low type exerts a suboptimal effort with

s1L − s2L = b− λ(θH − θL)

(1− λ)(1− θL)− λ(θH − θL)
[γ −R− b] (25)

- The high type gets a positive informational rent.

The proof is in Appendix C.3. When a high type is highly probable, the
agency uses a couple s2L = F and s1L = F −R < 0 to trigger the deployment
of a low type project (thanks to Assumption 7) without generating a rent
for a high type. It is then possible to complete the menu with a couple
that extract the maximimum surplus from a high type firm. It is not worth
encouraging effort of a low type because of the rent to a high type it would
generate. When a high type is less probable, the situation is standard: the
high type exerts the optimal effort and gets an informational rent, the low
type exerts a suboptimal effort without getting any profit. The trade-off
implicit in the expression of s1L−s2L displayed is the following: reducing s1L
necessitates to compensate a low type by increasing s2H , it reduces the effort
of a low type, and it allows to reduce the rent of the high type. The last
rent reduction effect is reflected in the difference θH − θL: a high type being
more probably successful than a low type, re-equilibrating the subsidy from
success (s1L) to failure (s2H) reduces the windfall profit of the high type.

As the frequency of a high type decreases, the difference s1L−s2L increases
and converges toward b, the rent of a high type increases. The similar pattern
as in Proposition 3 emerges for the scheme offered to low type: when a high
type is less probable, success is rewarded to encourage effort; when a high
type is more frequent, success is less rewarded (even penalized), the subsidy
is shifted to failure in order to limit the rent captured by high types.

4 Numerical illustrations and discussion
In all our numerical examples we take F = 1 (which may be seen as a
normalization) and R = 1.5, assumption 1 is satisfied. The firm profit in a
business as usual situation would be positive if the probability of success is
higher than pf = F/R = .67.
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4.1 Adverse selection: the superiority of rewarding fail-
ure over a flat subsidy

We first illustrate how rewarding failure optimizes between the selection bias
and the windfall profit and show how a flat subsidy would be much less
effective in this optimization. We consider the case of an homogeneous dis-
tribution (g(p) = 1 and G(p) = p). Then the optimal second best solution
and the optimal flat subsidy (noted with the label FS) can be easily derived.

Corollary 9 For the class SSB, two cases should be distinguished:

• If b < R(R− F )/(2F )(= 0.375), then s∗1 = s∗2 = 0,

• otherwise the optimal threshold probability is such that

pSB =
1

2

R + F

R + b
(26)

and the optimal scheme satisfies:

s∗1 = 0 and s∗2 =
F (R + 2b)−R2

R + 2b− F
(27)

And similarly we get for the optimal flat subsidy:

Corollary 10 With a flat subsidy, that is s = s1 = s2, two cases should be
distinguished:

• If b < R(R− F )/F (= 0.75), then s1 = s2 = 0,

• otherwise the optimal threshold probability is such that

pFS =
R + F

2R + b
(28)

and the optimal subsidy is :

s1 = s2 =
F (R + b)−R2

2R + b
(29)
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(a) Optimal second best solution (b) Optimal flat subsidy

Figure 2: Decomposition of welfare as a share of W FB as b increases

The relative efficiencies of both schemes and the way they optimize be-
tween the selection bias and the windfall profit are depicted in Figure 2a and
2b. The superiority of rewarding failure appears clearly. For instance for
b = 1 rewarding failure allows for getting 39% of the first best net welfare
gain defined asW FB−Π(0, 0) while this drops to only 4% with a flat subsidy.
Note also that the social benefit b need to be higher than some threshold (and
a much higher one in case of flat subsidy) to induce the agency to subsidize a
project. This comparison indirectly sets a value for the observability of suc-
cess versus failure. Indeed in the case of an uninformative signal the agency
would only be able to propose a flat subsidy, a much less efficient scheme.

4.2 The case for rewarding success in the presence of
managerial risks

Moral hazard becomes an important issue as the social benefit increases.
Then the agency more and more prefers to get a success. We introduced the
idea that increasing the probability of success is costly for the firm, to capture
that the firm may get spill-overs from the project, which are not reflected
in the observable profit R. Inducing the firm to make an effort would then
mean that the firm concentrates on the project as such to the detriment of
the spill-overs.

Recall the formalization of section 2.2.: the level of effort induced by a
scheme (s1, s2) depends only on the difference s1 − s2 and not on the type

21



of the firm θ. A flat subsidy induces no further effort than the BAU effort,
so that it is worth nothing to the agency. The increase in the probability of
success for a given level of effort decreases as the type of firm (the probability
of success without effort) increases. Under these circumstances we may ex-
pect that the benefit of rewarding success over a flat subsidy would increase
as the social benefit increases and decrease as the type of the firm increase.
This is illustrated in the following graphs.

We keep F = 1, R = 1.5 and set γ = 12. We have θBAU = .64. We
compute the optimal second best scheme for b = 2 and b = 10 for all θ in
[0, 1]. The limit value between cases 1 and 2 in Proposition 2 for b is such
that R + b = 2

√
2Fγ, that is, b = 8.3.

For b = 2, Case 1 of Proposition 2 prevails. We have θFB = .16. If
θ ≤ θFB the agency does not subsidize the project; if θFB ≤ θ ≤ θBAU the
agency proposes s1B, the project is implemented without any windfall profit
to the firm, but the agency gets less than the first best welfare. If θBAU ≤
θ ≤ 1 the agency does not propose any subsidy, the project is implemented as
BAU. Figure 3a depicts the corresponding probabilities of success, given the
associated efforts, eBAU , eSB. Figure 3b gives the corresponding the payoffs.

(a) Effort (b) Payoffs

Figure 3: Effort (a) and payoffs (b) with moral hazard as a function of type
θ of the project with b = 2.

Consider now case 2 with b = 12. We have θFB = 0 and a numerical
analysis shows that θA = .15. Figures 7 and 8 are similar to Figures 4 and 6.
Observe that pFB is very close to 1 and the project is always deployed. The
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agency proposes s1A if 0 ≤ θ ≤ θA, s1B if θA ≤ θ ≤ θBAU and no subsidy if
θBAU ≤ θ ≤ 1. Note that in the first situation the firm gets a windfall profit.

(a) Probability of success (b) Payoffs

Figure 4: Probability of success (a) and payoffs (b) with moral hazard as a
function of type θ of the project with b = 10.

Comparing these two cases two comments can be made. Firstly, the
benefit of rewarding success rather than using a flat subsidy is higher for low
and medium values of θ; for high values the benefit of rewarding success is
too low relative to letting the firm implement eflat. Secondly, the higher b
the more important for the agency to have the project implemented. So that
for low values of θ the agency provides a higher reward for success, which
strongly increases the probability of success, provides a benefit for the agency
and a windfall profit for the firm. There is a tradeoff between encouraging
success and letting a windfall profit. This clearly shows that the superiority
of rewarding success over a flat subsidy depends on the magnitude of the
social benefit.

4.3 Why proposing a menu may not be better than com-
bining rewarding success and rewarding failure

The above discussion suggests that rewarding success and rewarding failure
pursue two distinct objectives. If the initial probability of success is low and if
there are managerial risks reward success. If there are significant asymmetry
of information on the probability of success between the agency and the
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firm and if this opens the opportunity for windfall profit reward failure. In
a situation in which these two issues co-exist designing an optimal second
best scheme becomes tricky because each type of scheme generates perverse
outcomes when used inappropriately. We shall illustrate this point through
a numerical example and show how introducing a menu allows for solving
the dilemma.

We stick to F = 1, R = 1.5, b = 2 and γ = 12. We have θFB = .16
and θBAU = .64. We introduce two discrete types: a low type for which
θFB < θL = .3 < θBAU and a high type for which θH = .75 > θBAU .
Assumption 6 is satisfied: A low type firm would not implement the project
but it would be socially valuable to do it. A high type firm would implement
the project without subsidy. The parameter λ denotes the probability for
the firm to be of the high type.

We can derive numerically the thresholds for λ to approximately be λ1 =
.1, λ2 = .3 and λ3 = .6. Figure 5(a) depicts the second best optimal solution:
only reward success if 0 ≤ λ ≤ λ1, reward both success and failure if λ1 ≤
λ ≤ λ2, only reward failure if λ2 ≤ λ ≤ λ3, and provides no subsidies if
λ3 ≤ λ ≤ 1. The extreme cases correspond to intuition. Reward success if λ
is small, a situation in which effort should be encouraged and windfall profit
discounted by a low probability of occurence. Reward failure if λ is large
for the reverse reasoning, up to a point at which type θL does not matter
anymore and BAU should be prefered, letting no windfall profit to type θH .
The interesting part is when λ1 ≤ λ ≤ λ2 for which we expect the most from
a menu.

Figure 5(b) gives the optimal menu. Its construction follows from Propo-
sition 4. Observes that it uses negative values for subsidies so as to get back
the profit of the firm.9

Figure 5(c) gets to the point. It allows for comparing the second best
effort and the conditional menu efforts. The second best effort decreases as
λ gets into the zone λ1 ≤ λ ≤ λ2. The effort for type θL is sacrificed for not
giving a windfall profit to type θH . With a menu this is also the case but the
first best effort for a high type firm is elicited, for a low benefit. Altogether
we do not expect that the menu increases a lot the expected benefit for
the agency. This argument does not carries over to large values of λ since
negative subsidies allow the agency to recover the profit of the firm. As a

9We have not derived the optimal second best menu but we think that this would not
qualitatively alter our argumentation.
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side comment observe that it is optimal not to induce the first best effort for
the low type firm (a standard result of contract theory) this explains why
the first best cannot be achieved with a menu independently of negativity
constraints.
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(a) Optimal second best scheme as a function of
the probability λ of high type

(b) Optimal menu as a function of the proba-
bility λ of high type

(c) Efforts as a function of the probability λ of
high type

Figure 5: Optimal second best scheme, menu and efforts with two types L
and H as a function of the probability λ of a high type (R = 1.5, F = 1,
γ = 12 and b = 2).

Figure 4.3 confirms that the benefit of using a menu is not significant
for λ1 ≤ λ ≤ λ2. As expected the benefit of using a menu (without non-
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Figure 6: Payoffs as a function of the probability of a high type with First
Best, Second Best and a menu (unconstrained).

negativity constraints) becomes significant for high λ through recovering the
profit of the firm. In this Figure the expected windfall profit for the firm
with a second best optimal scheme is also displayed (multiplied by 10 to be
seen in the graph).T It exhibits two peaks reflecting the conflicting forces
associated with rewarding success and rewarding failure.

5 Conclusion
This paper is concerned with public financing of R&D programs for the
energy transition that have the following characteristics: the program has
an uncertain outcome ranging from full success to total failure, the social
benefit is associated with success which also generates private gains, public
financing takes the form of subsidies, the state agency which monitors the
subsidy allocation process has much less information about the economics of
the project than the firm.

Our analysis formalizes such situations using a principal agent frame-
work with constraints on the incentive structure. We identify three potential
sources of inefficiency and suggest the contractual arrangements that can
be implemented to mitigate them. The first source of inefficiency concerns
observability conditions. We allow various situations for the observability
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of the success or failure of the project on top of a prerequisite to observe
the reality of the investment. The second source concerns the presence of
adverse selection: uncertainty on the success may arise from a technical risk
about which the firm may be much better informed about than the agency.
Finally we introduce the possibility of managerial risks: the firm may have
some private interest for investment which are not relevant for the agency
such as spill overs for other R&D projects. This would create an opportunity
for moral hazard.

The relevance of our analysis can be discussed in line with the evolution
of the practice of ADEME for the PIA, a context which particularly fits our
model. Initially only flat subsidies were used. This generated two kind of
problems. On the one hand, the identification of windfall profits for projects
that would have been deployed without any subsidy and, on the other hand,
the identification of projects that would be socially beneficial but could not be
subsidized given a EU constraint that limits the level of subsidy at a given
percentage of the investment cost. This led the agency to use repayable
advances. We prove that such schemes which amounts to rewarding failure
are indeed optimal when the asymmetry of information takes the form of
adverse selection. Moreover repayable advances allow for relaxing the EU
constraint.

The difficulty in the observation of success, including managerial risks
by the firm, led the agency to formalize success through steps and have
repayable advance paid back in part along the way as well as to increase in
the interest rate as the repayment schedule is delayed. This may be seen
as a counterpart of unobservable spill over to other projects. We show that
the advantages of repayable advances decrease as observability conditions
deteriorate. Moreover rewarding success is shown to be a good strategy
when the asymmetry of information takes the form of moral hazard.

All this evolution at ADEME is very pragmatic, incremental and follows
rules of thumb. Our economic analysis, in spite of our simplifying assump-
tions, may already offer some guidance for the design of the contractual
arrangements relevant to each project. To be fully relevant our framework
would benefit from several extensions, which may be interesting for their own
sake. We can think of three extensions. Firstly a complete analysis of our
general model would be helpful to understand how rewarding success and
rewarding failure may complement each other in some situations. Possibly a
third benchmark model could be identified along the way. Secondly we only
investigate a situation in which the project leads to two extreme outcomes,
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failure or success, a more realistic model should allow for a continuous set
of outcomes that would be imperfectly observed by the agency. Thirdly,
the asymmetry of information may involve another party. It appeared that
ADEME sometimes plays the role of a middle man between the firm and
the banking system. Due to its technical expertise ADEME the asymmetry
of information is much more acute between the firm and the banking sys-
tem than from the firm and ADEME. The formalization should explicitly
take this dynamic aspect into consideration and analyze how the contractual
arrangement should evolve as this asymmetry reduces over time.
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Appendix

A Proof of corollary 3
Let us denote σ1 = α1s2 + (1−α1)s2 and σ2 = α2s2 + (1−α2)s2 the subsidy
obtained in case of success and failure respectively.
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For the unconstrained class S: with the couple of subsidy: s1 = F −
α2R/(α2−α1) and s2 = F + (1−α2)R/(α2−α1), the expected subsidies are
σ1 = F and σ2 = F −R which implement the first best.

The reasoning of Lemma 1 can be reproduced: an increase of σ2 coupled
with a reduction of σ1 that leaves p̃ unchanged reduces the total expected
subsidy. Consequently it is optimal to set s1 = 0 and s2 > 0.

Then, with s1 = 0, σ1 = xσ2 with x = α1/α2 and the threshold probability
is p̃(xσ2, σ2), the regulator surplus is

V (xσ2, σ2) =

∫ 1

p̃

[
p(b− xσ2)− (1− p)σ2

]
dG(p)

and welfare is W (p̃(xσ2, σ2)).
If α1 = 0 then x = 0 and the surplus of the regulator, the profit of firms,

and total welfare could all be written as functions of σ2 without any other
dependence on α2. The optimum second best scheme is then similar to the
scheme described by Proposition 2 with α2s2 being independent of α2.

The total derivative of the threshold type w.r.t. σ2 is:

dp̃

dσ2
= − 1− (1− x)p̃

R− (1− x)σ2

the first order condition satisfied at the optimal scheme is[
p̃− pFB

]
g(p̃)

1− (1− x)p̃

R− (1− x)σ2
=

∫ 1

p̃

[
px+ (1− p)

]
dG(p)

which could be rewritten

p̃ = pFB +
1

g(p̃)

R− (1− x)F

R + b

∫ 1

p̃

px+ (1− p)(
1− (1− x)p̃

)2dG(p)

with a homogeneous distribution it gives:

p̃ = pFB +
R− (1− x)F

R + b

1

2(1− x)

[
1− x2(

1− (1− x)p̃
)2]

Let us prove that pSB increases with respect to x (brutal calculations):

• the RHS side is a decreasing function of p̃
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• It is increasing with respect to x:

Its derivative wrt to x is

(1− p̃)
2(R + b)

2Fx+R[(1− p̃)2 − xp̃(1 + p̃)](
1− (1− x)p̃

)3
the sign of the derivative is the sign of 2Fx + R[(1 − p̃)2 − xp̃(1 + p̃)]
which is positive (using that p̃ < F/R).

The effect of x on the regulator surplus at the optimal scheme, by an
envelop argument, it is

∂V

∂s1
(xσ2, σ2)σ2

which is negative.
Welfare is decreasing with respect to p̃ as long as p̃ > pFB.

B Proof of Proposition 2
• First step: s∗2 = 0:

The regulator maximizes its surplus (eq. 14) subject to the non-negativity
constraints on profit (eq.15) and subsidy s1 and s2. The Lagrangien is:

L = v(θ, e(s1 − s2), s1, s2) + µ0π + µ1s1 + µ2s2

With µ0 the Lagrange mulltiplier associated to the participation constraint,
µi the maultiplier associated with the non-negativity constraint of si, i = 1, 2.
At the optimum

pe(e, θ)[b− (s1 − s2)]e′ − (1− µ0)p+ µ1 = 0 (30)

− pe[b− (s1 − s2)]e′ − (1− µ0)(1− p) + µ2 = 0 (31)

And the corresponding slackness conditions. There are eight possible sit-
uations depending on whether each Lagrange multiplier is null or positive.
Summing the two equations gives

µ1 + µ2 + µ0 − 1 = 0 (32)

Let us denote s∗1 and s∗2 the optimal subsidies.
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• At least one of the µi is positive: otherwise µ1 = µ2 = 0 then µ0 = 1
and s∗1 − s∗2 = b. Welfare is then −(1 − p)s∗2 < 0, which cannot be
optimal.

Consequently, µ1 + µ2 > 0 and µ0 < 1 (from eq. (32)).

• We show by contradiction that b > s∗1 − s∗2: otherwise, from equation
(30) µ1 = (1− µ0)p− pe[b− (s∗1 − s∗2)]e′ > 0, which implies that s∗1 = 0
and s∗2 < s∗1 − b = −b < 0 a contradiction.

• Then s∗2 = 0: from equation (31): µ2 = (1 − µ0)(1 − p) + pe[b − (s∗1 −
s∗2)]e

′ > 0.

• Second step: Expressions of the optimal subsidy
There are four possible cases: i) s∗1 = 0 and π > 0, ii) s∗1 = 0 and π = 0,

iii) s∗1 > 0 and π > 0, or, iv) s∗1 > 0 and π = 0.
Case i) corresponds to “business as usual” no subsidy is used and the

project is implemented with suboptimal effort. Case ii) corresponds to a
situation in which the project is not profitable and it is not worth subsidizing
it.

In case iii) s∗1 > 0 and π > 0 then ∂p/∂e[b − s∗1]e′ = p, and in case iv)
s∗1 > 0 and π = 0 then pe[b− s∗1]e′ − p = −µ0p ≤ 0.

The subsidy s1A(θ) defined by equation (21) is the solution of ∂p/∂e[b−
s∗1]e

′ = p. And s1B(θ) is the solution of π(θ, e(s1), s1, 0) = 0, replacing e by
(R + s1)/γ in eq. (15) gives a second order equation in (R + s1) with one
positive root given by equation (22).

If s∗1 > 0 and π > 0 then s∗1 = s1A, and if s∗1 > 0 and π = 0 then s∗1 = s1B.
Furthermore, if both expressions s1A and s1B are positive the optimal subsidy
is the larger of the two.

•Third step: Definition of the thresholds
θBAU is the solution of s1B(θ) = 0, it is the lowest θ at which a null

subsidy ensures deployment. θA is the solution of s1A(θ) = max{s1B(θ), 0}.

• From the the expressions (21) and(22) s1A > s1B if and only if

(b+R)2

4
>

(
γθ

1− θ

)2

+ 2F
γ

1− θ
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the right hand side being strictly increasing with respect to θ and,
converging toward infinity as θ approaches 1, so that θA < 1 and s1A >
s1B ⇔ θ < θA.

• θA ≥ 0 if and only if R + b < 2
√

2Fγ, otherwise, if R + b > 2
√

2Fγ,
then for all θ ∈ [0, 1] s1B > s1A, that is π(θ, e(s1A), s1A, 0) < 0.

• s1B(θFB) = b (if θFB > 0) by definition of θFB: p(eFB, θFB)(R + b) −
F − f(eFB, θFB) = 0, so 0 = v(θFB, eFB, b, 0) + π(θFB, e(b), b, 0) =
π(θFB, e(b), b, 0).

We can now look at the optimal solution

• Case 1: R + b < 2
√

2Fγ:

– Then s1A < s1B for all θ, which implies that pe[b − s1]e′ < p for
all s1 ≥ s1B, for all θ. The optimal subsidy is then either s∗1 = 0
or s∗1 = s1B.

– The surplus of the regulator for s1 = s1B(θ) is v = p(e(s1B(θ)), θ)(b−
s1B(θ)), it is positive if and only if b > s1B(θ), that is, θ > θFB.

– For θ > θBAU : the project is implemented and no surplus is cre-
ated by a marginal increase of effort (peb− p < 0) so s∗1 = 0.

• Case 2: R + b ≥ 2
√

2Fγ:

– For 0 < θ < θA, s1A > s1B so that π(θ, e(s1A), s1A, 0) > 0, and
pe[b− s1]e′−p > 0 for both s1 = s1B and s1 = 0, so that s∗1 = s1A.

– For θA ≤ θ < θBAU : s1A < s1B so that π(θ, e(s1A), s1A, 0) < 0 and
s1B > 0 so that s∗1 = s1B. This case might not arise if θA > θBAU

that is s1A(θBAU) > 0.

– For θ ≥ max{θA, θBAU}: the profit is positive for s1 = 0 and
pe(b− s1)e′ − p < 0 at s1 = 0 so that s∗1 = 0.

C Adverse Selection and Moral Hazard
To alleviate notation the probability p(e, θL) and p(e, θH) are denoted with
subscripts: pL(e) and pH(e), and the profits πL and πH .

34



Let us denote (s∗1, s
∗
2) the optimal solution. There are four possible types

of solution depending on whether each component is positive or null. Lemma
(3) derive the expressions of the subsidies when they are positive, Proposition
(3) consider the influence of λ on the solution.

C.1 Proof of Lemma 3

If both s∗1 and s∗2 are positive, then low type projects are implemented and
their profits are null. The regulator surplus is then

v(s1, s2) = (1−λ)
[
pL(b−s1)− (1−pL)s2

]
+λ
[
pH(b−s1)− (1−pH)s2

]
(33)

and the optimal scheme satisfies the following equation

∂v

∂s1

∂πL
∂s2
− ∂v

∂s2

∂πL
∂s1

= 0

that is
∂v

∂s1
(1− pL)− ∂v

∂s2
pL = 0

which gives, denoting s∗ = s∗1 − s∗2:

λ[pH(1− pL) + (1− pH)pL] =
[
(1− λ)

∂p

∂e
(e, θL) + λ

∂p

∂e
(e, θH)

]
(b− s∗)e′

λ[pH − pL] =
[
(1− λ)(1− θL) + λ(1− θH)

]
(b− s∗) 1

γ

λ(θH − θL)(γ − (R + s∗)) =
[
(1− λ)(1− θL) + λ(1− θH)

]
(b− s∗)

which then gives equation (23). The equation (24) corresponds to πL = 0.

C.2 proof of Proposition 3

The solution s∗1 = s∗2 = 0 corresponds to the situation in which L firms do
not enter. The regulator surplus in that situation is:

V1(λ) = λpHb
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In all other situations, if one of the optimal subsidy is positive, L firms
do enter (from Proposition 2, if only H firms enter then it is optimal to set
s1 = s2 = 0). The regulator surplus when L firms enter is

V2 = (1− λ)[pL(b− s1)− (1− pL)s2] + λ[pH(b− s1)− (1− pH)s2]

that can be equivalently defined as a function of s = s1 − s2 and s2:

V2(λ, s, s2) = (1− λ)[pL(b− s)− s2] + λ[pH(b− s)− s2]

and the constraint s1 ≥ 0 is then s+ s2 ≥ 0.
The problem of the regulator can be decomposed in two steps: first max-

imize V2 and then compare the maximum obtained with V1.
Let us consider the maximization of V2 subject to πL ≥ 0, s2 ≥ 0 and

s + s2 ≥ 0 and denote s∗∗(λ) and s∗∗2 (λ) the solution, and s∗∗1 = s∗∗ + s∗∗2 .
The problem can be simplified by transforming the three constraints πL ≥ 0,
s2 ≥ 0 and s+s2 ≥ 0 into two constraints on s, by parameterizing everything
by s.
• At the maximum πL = 0: by contradiction, if πL > 0 then s∗∗2 = 0 and

s∗∗1 is larger than s1B (which cancels πL, it is defined by eq. 22) and solves

[(1− λ)
∂pL
∂e

+ λ
∂pH
∂e

](b− s1)e′ = (1− λ)pL + λpH

then ∂pL/∂e(b − s∗∗1 )e′ > pL that is s∗∗1 < s1A(θ) (given by eq. 21) which
is lower than s1B(θ) when (R + b) ≥ 2

√
2Fγ (proof of Proposition 2), a

contradiction.
• We can then define s2(s):

s2(s) = F −max
e

[p(e, θL)(R + s)− f(e, θL)]

it is decreasing with respect to s with s′2(s) = −pL. And s1(s) = s+ s2(s) is
strictly increasing with respect to s (s′1 = 1− p).
- For s = −R, s2(−R) = F and the associated s1 is F −R < 0.
- At s = s1B, the profit πL(e, s1B, 0) is null so that s2(s1B) = 0, and s >
s1B ⇔ s2(s) < 0. Note also that s1B < b.
- At s = 0, s2(0) is positive equal to −πL(e, 0, 0).
- Define s the solution of s + s2(s) = 0, it is between −R and 0. The corre-
sponding s2 is such that πL(e, 0, s2) = 0.
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The regulator’s objective is then equivalent to the maximization of

max
s
V2(λ, s, s2(s)) s.t. s ≤ s ≤ s1B

The derivative of the objective function with respect to s is:

V(λ, s) =
[
(1− λ)

∂pL
∂e

+ λ
∂pH
∂e

]
(b− s) 1

γ
− λ[pH − pL]

=
[
(1− λ)(1− θL) + λ(1− θH)

]
(b− s) 1

γ
− λ(θH − θL)(1− R + s

γ
)

=
[
(1− θL)− 2λ(θH − θL)

]
(b− s) 1

γ
− λ(θH − θL)(1− eFB) using 17

=(θH − θL)
[
(λ− λ)(b− s)/γ − λ(1− eFB)

]
in which

λ =
1− θL

2(θH − θL)

This derivative is strictly decreasing with respect to s as long as λ < λ.
It is also decreasing with respect to λ for s < s1B.

For all s ∈ [s, s1B] we have V(0, s) = (1−θL)(b−s)/γ > 0 and V(λ, s) < 0.
So we already know that s∗∗(0) = s∗∗1 (0) = s1B and s∗∗2 (0) = 0, and that,

∀λ > λ, s∗∗(λ) = s: s∗∗1 (λ) = 0 and s∗∗2 (λ) = s2(s) the solution of

pL(e)R + (1− pL)s2 = F + fL(e)

And we can define :

• λ1 the solution of V(λ, s1B) = 0

• λ2 the solution of V(λ, s) = 0

Then the optimal solution as a function of λ is such that

• 0 ≤ λ < λ1: s∗∗(λ) = s∗∗1 (λ) = s1B and s∗∗2 (λ) = 0

• λ1 ≤ λ < λ2: s∗∗(λ) ∈ (s, s1B), s∗∗1 (λ) > 0 and s∗∗2 (λ) > 0

• λ2 ≤ λ ≤ 1: s∗∗(λ) = s, s∗∗1 (λ) = 0 and s∗∗2 (λ) = s2(s) > 0

Then, the regulator should compare V2 and V1, the difference V2 − V1 is
decreasing with respect to λ and positive for λ = 0 and negative for λ = 1 (by
Proposition 2). There is then a λ3 so that λ > λ3 implies s∗∗1 (λ) = s∗∗2 (λ) = 0.
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C.3 Proof of Proposition 4

The proof and the exposition are easier if we work with s = s1 − s2 and s2.
That is, the regulator proposes a menu {(sL, s2L), (sH , s2H)}, and if a firm of
type i chooses the item (sj, s2j) with i, j ∈ {H,L} it exerts the effort e(sj)
and gets

πij = θi(R + sj) + (1− θi)
(R + sj)

2

2γ
− F + s2j

and to further alleviate the exposition we denote pi = p(θi, e(si)) and
pHL = p(θH , e(sL)).
• At the optimal menu m∗ both types deployed their project:

If the low type project is deployed so is the high type project. The
agency can propose a menu m0 with (sL, s2L) = (−R,F ) and (sH , sHL) =
(b, F − θH(R + b) + (1 − θH)(R + b)2/(2γ)), with this menu the agency ex-
tracts the maximum surplus from high types and gets a surplus from low
types. It cannot do better by discouraging low type and only subsidizing the
deployment of high types.
• The optimal menu m∗ is then the solution of:

max
m

λ[pH(b− sH)− s2H ] + (1− λ)[pL(b− sL)− s2L] (34)

subject to πii ≥ 0 for i = H,L, and πii ≥ πij for i, j ∈ {H,L}.
Form the first step, the optimal menu is m0 with s∗L = −R (the low

type exerts no effort and gets zero profit, the agency can then extract the
maximum surplus from a high type) or such that s∗L > −R. Any menu with
sL < R cannot generate more surplus than m0.

Then, the only two binding constraints at the optimal menu are πLL ≥ 0
and πHH ≥ πHL because R + sL ≥ 0, so that πHL > πLL and at the optimal
scheme s∗H > s∗L (to be checked at the end) so that (πHH − πHL) − (πLH −
πLL) = (θH − θL)(s∗H − s∗L).

Then, if s∗L > −R a low type firm exerts an effort, write the Lagrangien

L(sL, s2L, sH , s2H) = λ[pH(b− sH)− s2H ]+(1− λ)[pL(b− sL)− s2L]

+ µLπLL + µH(πHH − πHL]

with µL and µH the Lagrange multipliers of the constraints πLL ≥ 0 and
πHH ≥ πHL respectively. Then the optimal menu satisfies the KKT condi-
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tions:

∂L
∂sH

= λ
∂pH
∂e

(b− sH)e′ + (µH − λ)pH = 0 (35)

∂L
∂s2H

= µH − λ = 0 (36)

∂L
∂sL

= (1− λ)
∂pL
∂e

(b− sL)e′ + (µL − (1− λ))pL − µHpHL = 0 (37)

∂L
∂s2L

= −(1− λ) + µL − µH = 0 (38)

Form eq. (35) and (36) s∗H = b. From eq. (36) and (38) µL = 1, and
together with eq. (36) it gives

(1− λ)(1− θL)(b− sL)
1

γ
= λ(pHL − pL) = λ(θH − θL)(1− R + sL

γ
)

which, after some manipulations gives the expression (25) for s∗L in Propo-
sition 4. The optimal subsidy s∗2L cancels a low type profit, and the subsidy
s2H is found with the constraint πHH = πHL.

If the above scheme can be implemented it outperformedm0. The subsidy
s∗L is decreasing with λ, and λmenu is the solution of s∗L = −R (with the ex-
pression 25). Note that the denominator in (25) is positive for λ ∈ [0, λmenu].

D Proof of Corollary 9
Proof.

From Proposition 1, equation (8) the threshold value of b is

R3

F (R− F )

1

2
(1− pBAU)2 =

R(R− F )

2F

then if b is larger than this value the optimal threshold type pSB solves
equation (9):

pSB = pFB +
R− F
R + b

∫ 1

pSB

1− p
(1− pSB)2

dp =
F

R + b
+

1

2

R− F
R + b

=
1

2

R + F

R + b

and using equation (3) gives (29).
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